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ANNOUNCEMENTS
• HW3 is 75% graded

• Quiz 6 and Quiz 7 will be graded by tonight

• Quiz 8 will be released on Ed’s Sway by Thurs

• Phase 3 is 50% graded

• Research Project Phase 4 due Thurs night:

• Write a bulleted list of what each team member has done

• All member should sign it

• Submit on Canvas
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Course Overview + What is NLP?

Lecture 1: Introduction



What is this course?

Our digital world is inundated with data, most textual data

62B pages 500M tweets/day 360M user pages 13M articles
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What is this course?

Natural Language Processing (NLP) is the study of how to get computers to 

process, “understand”, and leverage human language data.

Speech Audio

(Signal Processing work is a cousin 

community and often done by EE folks)

Written Text

Neural Decipherment via Minimum-Cost Flow: 
From Ugaritic to Linear B Luo, et al. (2019)

Sign Language

Including Signed Languages in Natural 
Language Processing Yin, et al. (2021)

9

https://aclanthology.org/P19-1303.pdf
https://aclanthology.org/2021.acl-long.570.pdf


NLP Successes

NLP has been around since the 1960s, but the progress in the past 10 years has 

been astronomical. Models are becoming effective enough for consumer use.
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Voice Assistants



NLP has been around since the 1960s, but the progress in the past 10 years has 

been astronomical. Models are becoming effective enough for consumer use.
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Translation

NLP Successes



NLP Successes

NLP has been around since the 1960s, but the progress in the past 10 years has 

been astronomical. Models are becoming effective enough for consumer use.
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Auto-complete



NLP Successes

NLP has been around since the 1960s, but the progress in the past 10 years has 

been astronomical. Models are becoming effective enough for consumer use.
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Text Classification



NLP Successes has room for improvement
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Chatbots

1.

2.

3.

4.



NLP Successes
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NLP has been around since the 1960s, but the progress in the past 10 years has 

been astronomical. Models are becoming effective enough for consumer use.

Search Engines
(information retrieval)
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?

English 
sentences

Spanish 
sentences

Machine Translation 
System

𝑓 𝑿X Y

How do these systems work?!



How do these systems work?!

Spanish 
sentences
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For example

?

English 
sentences

Machine Translation 
System

𝑓 𝑿X Y

While we don’t necessarily have to produce a Y for every NLP 
problem (i.e., supervised learning), most interesting problems do.

Luckily, we have tons of (X, Y) data pairs, right? Kind of.  



What’s in the box?!
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?

English 
sentences

Spanish 
sentences

Model

𝑓 𝑿X Y

Our computational model could 

be anything:

• Rule-based system

• CRF

• HMM

• Statistical Alignment Model 

(e.g., IBM Models)

• Probabilistic Graphical Model

• Neural Network

Se7en (1995)

https://www.imdb.com/title/tt0114369/


What’s in the box?!
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?

English 
sentences

Spanish 
sentences

Model

𝑓 𝑿X Y

Regardless of the model, it doesn’t actually “understand” 
language. It simply approximates understanding for a 
particular objective. This seems good enough.



Learning Objectives
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• understand the theoretical concepts behind NLP tasks and models

• Not just a surface-level understanding of LSTMs, Transformers;

• What is the model actually doing? How does it work? Why does it work? What 

are its limitations? Past approaches? What are alternatives? 

• write effective programming solutions to popular problems in NLP

• tackle your own, novel goals with text data once this course is over

• conduct substantial, original NLP research

I want everyone to finish the course feeling confident and 
empowered to develop NLP solutions and embark on novel research



Researcher:

• What is possible to build?

• How can we use existing blocks in new ways?

• What are the limitations of current blocks?

Software Developer:

• The Builders. Creators.

• Interested in tools to build better, quicker, organized, useful 
structures

Manager:

• Bridges everyone’s skills to make great things actually happen

Image source: lego.com

Why so research-heavy?
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Expectations of you
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Expected to demonstrate not only the ability to understand the core 

concepts of this course, but to be able to do some research, i.e.:

• read papers beyond what's mentioned in class

• critique other papers (even if the concepts are new to you)

• be curious

• come up w/ questions

• try to answer these questions

I expect you to challenge yourself. This class is intended to be 

challenging (but not too challenging).



Expectations of me
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I want this course to be an incredibly rewarding experience and the best 

CS class you take. I pushed to create this course and offer it. Huge 

thanks to IACS, DCE, CS, and higher-up folks at SEAS for approving it.

Hold me accountable to make it as equitable, fair, clear, and smooth of 

an experience as possible. I gladly welcome anonymous feedback at any 

time, and I solicit such as part of each HW assignment.

If something needs improving, let’s work to make it better. I’m here to 

help you all learn and succeed in this course.



Assessment

All course assessment is structured around 3 pillars:

• Building a foundation of theory/concepts (pop-quizzes and exam)

• Demonstrating you can apply the knowledge (homework)

• Creating new knowledge (12-week research project)
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Assessment

Pop quizzes
(10%)

Exam
(10%)

Homeworks
(30%)

Research 
project
(50%)

foundation
application
creating knowledge
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Language is funny
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“Red tape holds up new bridges”

“Hospitals are sued by 7 foot doctors”

“Local high school dropouts cut in half”

“Tesla crashed today”

“Obama announced that he will run again”

“Kipchoge announced that he will run again”

“She made him duck”

“Will you visit the bank across from the river bank? You can bank on it”

“Yes” vs “Yes.” vs “YES” vs “YES!” vs “YAS” vs “Yea”



Why study NLP?
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NLP: why
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The entire point of computers is to assist humans.

Having computers ”understand” our language and how we 

communicate as a species is a natural entry point and required 

step to significantly assisting us in our lives.



What are some NLP tasks?
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Morphology

Word Segmentation

Part-of-Speech Tagging

Parsing

Constituency

Dependency

Syntax
Sentiment Analysis

Topic Modelling

Named Entity Recognition (NER)

Relation Extraction

Word Sense Disambiguation

Natural Language Understanding (NLU)

Natural Language Generation (NLG)

Machine Translation

Entailment

Question Answering

Language Modelling

Semantics

Discourse
Summarization

Coreference Resolution

Common NLP Tasks (aka problems)



What are some trends of 
NLP over the decades?
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Very brief history of NLP
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• 1960s: pattern-matching and rules (highly limiting)

• 1970s – 1980s: linguistically rich, logic-driven systems; labor-intensive 

successes on a few, very specific tasks

• 1990s – 2000s: statistical modelling takeover! ML becomes a central 

component; some systems are deployed for practical use (e.g., speech to text)

• 2010s – 2020s: Deep Learning (neural nets) yields astronomical progress on 

nearly every NLP task; systems become fairly useful for consumers

• 2020s – 2030s?: you can help drive the change

Slide adapted from or inspired by Sam Bowman



Very brief history of NLP
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First huge revolution: early 1990s (statistical approaches)

“But it must be recognized that the notion ‘probability of a sentence’ is 

an entirely useless one, under any known interpretation of this term”

“Anytime a linguist leaves the group, the recognition rate goes up”

-- Noam Chomsky (1969)

-- Fredrick Jelinek (1988)



Very brief history of NLP
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First huge revolution: early 1990s (statistical approaches)

“I refer to all of my work before ~1990 as the B.S. era. That is, ‘before 

statistics’”

-- paraphrasing my PhD adviser, Eugene Charniak at his ACL Lifetime Achievement Award (2011)



NLP nowadays
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GPT-2 (generates text and can fine-tune on your own data)

SYSTEM PROMPT (HUMAN-WRITTEN)
A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its whereabouts 
are unknown.

MODEL COMPLETION (MACHINE-WRITTEN, FIRST TRY)
The incident occurred on the downtown train line, which runs from Covington and Ashland stations.

In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal 
Railroad Administration to find the thief.

“The theft of this nuclear material will have significant negative consequences on public and 
environmental health, our workforce and the economy of our nation,” said Tom Hicks, the U.S. Energy 
Secretary, in a statement. “Our top priority is to secure the theft and ensure it doesn’t happen again.”
The stolen material was taken from the University of Cincinnati’s Research Triangle Park nuclear 
research site, according to a news release from Department officials.
The Nuclear Regulatory Commission did not immediately release any information.



NLP nowadays
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GPT-2 (generates text and can fine-tune on your own data)



NLP nowadays

37VideoBERT: A Joint Model for Video and Language Representation Learning. Sun, et al. ICCV 2019.



What constitutes Deep 
Learning?

38



Deep Learning
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• Deep Learning is just neural networks with more than 1 hidden 

layer (non-linear activation functions).

• For the 1st time ever, one paradigm of modelling (deep learning) 

yields the best results across nearly every domain of problems

• Our understanding of why and how the results are so compelling is 

very surface-level.

• Much work lies ahead (e.g., bias/fairness, explainability, robustness)



What are the two 
“cornerstones” of NLP?

40



The Two Cornerstones of NLP
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How do we get any system to process, ”understand”, leverage language?

• Representation: how do we transform symbolic meaning (e.g., words, 

signs, braille, speech audio) into something the computer can use

• Modelling: given these represented symbols, how do we use them to 

model the task at hand?



Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

What is NLP + How to represent language

Lecture 2: Language Representations



What are some of the 
linguistic levels that NLP 

addresses?
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Multiple levels* to a single word

Slide adapted from or inspired by Chris Manning and Richard Socher
speech

text
phonetics

phonology orthography

Discourse

Pragmatics

Semantics

Syntax

Lexemes

Morphology

*

44



Representing Images

Meaningful relation between the byte values and color.

170 33 71

r g b
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Representing Images

Meaningful relation between the byte values and color.

255 33 71

r g b

Thus, colors, and images at large, are well-represented.
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Representing Language

• Words are represented by Strings

a t e
61 74 65

Each byte corresponds to language’s smallest meaningful unit! Yay!
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But, no meaningful relation between the byte values and language!



Representing Language

• Words are represented by Strings

a t g
61 74 67

A.T.G. is, however, more intense. Never mind. Ignore this slide.
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Conceptual Dependencies

49Conceptual Dependency and its Descendants. Lytinen, S.L. Computers, Mathematics, and Applications (1992)



What are some external NLP 
data resources we can use?
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External Resources
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There are rich, external resources that define real-world 

relationships and concepts

(e.g., WordNet, BabelNet, PropBank, VerbNet, FrameNet, ConceptNet)



WordNet
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A large lexical database with English nouns, verbs, adjectives, and 
adverbs grouped into over 100,000 sets of cognitive synonyms 
(synsets) – each expressing a different concept.

Most frequent relation: super-
subordinate relation (”is-a” relations).

{furniture, piece_of_furniture}

Fine-grained relations:
{bed, bunkbed}

Part-whole relations:
{chair, backrest}

Synonyms:
{adept, expert, good, practiced, 
proficient}



ConceptNet
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A multilingual semantic knowledge graph, designed to help 
computers understand the meaning of words that people use.

• Started in 1999. Pretty large now.

• Finally becoming useful (e.g, commonsense reasoning)

• Has synonyms, ways-of, related terms, derived terms



What are some pros and 
cons of using external 

resources?
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Limitations
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• Great resources but ultimately finite

• Can’t perfectly capture nuance (especially context-sensitive)
(e.g., ‘proficient’ is grouped with ‘good’, which isn’t always true)

• Will always have many out-of-vocabulary terms (OOV)
(e.g., COVID19, Brexit, bet, wicked, stankface, “no cap”)

• Subjective

• Laborious to annotate

• Words with the same spelling are doomed to be imprecise



Outline

NLP: what and why?

Representing Language

Bag-of-Words

TF-IDF



Outline

NLP: what and why?

Representing Language

Bag-of-Words

TF-IDF



What is a “bag-of-words” 
model/representation?
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Bag-of-words (BoW)
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Let’s say our dataset’s entire vocabulary is just 10 words.

Each unique word can have its own dimension (feature index).

[ 0  0   0   0   0   0   0   0   0   0  ] 
do

g

th
e

qu
ic

k

w
en

t

br
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n a

ju
m

pe
d

fa
st

ov
er

st
or

e

NOTE: This is the Boolean version, which isn’t the most popular BoW representation



Bag-of-words (BoW)
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Each document’s vector has a 1 if the word is present. Otherwise, 0.

[ 1  1   0   0   0   0   1 0   0   0  ] 

e.g., “the dog jumped” is represented as
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NOTE: This is the Boolean version, which isn’t the most popular BoW representation



Bag-of-words (BoW)

61

Each document’s vector has a 1 if the word is present. Otherwise, 0.

[ 1  1   0   1 0   0   0   1 0   0  ] 

e.g., “the dog went fast” is represented as

do
g

th
e

qu
ic
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t
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d

fa
st
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st
or

e

NOTE: This is the Boolean version, which isn’t the most popular BoW representation



Bag-of-words (BoW)
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NOTE: The most common way of referring to this is as a “bag-of-words 

model”. Technically, the “bag-of-words” is referring to the representation, 

not the model.

“bag-of-words model” actually means “Model that uses a bag-of-words 

representation”



Pros and cons of BoW?
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Bag-of-words (BoW)
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Weaknesses:

• Flattened view of the document

• Context-insensitive (“the horse ate” = “ate the horse”)

• Curse of Dimensionality (vocab could be over 100k)

• Orthogonality: no concept of semantic similarity at the word-level

• e.g., 𝑑(dog, cat) =𝑑(dog, chair)



What is TF-IDF?

65
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TF-IDF

Notice that longer documents will naturally have higher counts than 

shorter documents.

[ 2 9 17  8 0  2 0   0   0   2 ] 
ba

se
ba
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d
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TF-IDF

Also notice that “the” has a fairly high count, too.

[ 2 9 17  8 0  2 0   0   0   2 ] 
ba

se
ba
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TF-IDF

Simple ideas. Let’s:

• disproportionately weight the common words that appear in many 

documents

• Use that info and combine it with the word frequency info



69

TF-IDF

TF (term frequency) = 𝑓𝑤! = # times word 𝑤! appeared in the document 

IDF (inverse document frequency) = 𝑙𝑜𝑔 ( # docs in corpus
# docs containing"!)

TFIDF = 𝑓𝑤! * 𝑙𝑜𝑔 ( # docs in corpus
# docs containing"!

)
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TF-IDF

Weaknesses:

• Flattened view of the document

• Context-insensitive (“the horse ate” = “ate the horse”)

• Curse of Dimensionality (vocab could be over 100k)

• Orthogonality: no concept of semantic similarity at the word-level

• e.g., 𝑑(dog, cat) =𝑑(dog, chair)
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TF-IDF

Weaknesses:

• Flattened view of the document

• Context-insensitive (“the horse ate” = “ate the horse”)

• Curse of Dimensionality (vocab could be over 100k)

• Orthogonality: no concept of semantic similarity at the word-level

• e.g., 𝑑(dog, cat) =𝑑(dog, chair)

Next lecture, we’ll address this
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TF-IDF

Weaknesses:

• Flattened view of the document

• Context-insensitive (“the horse ate” = “ate the horse”)

• Curse of Dimensionality (vocab could be over 100k)

• Orthogonality: no concept of semantic similarity at the word-level

• e.g., 𝑑(dog, cat) =𝑑(dog, chair)

In the following lecture, 
we’ll address these points
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The backbone of NLP

Lecture 3: Language Models
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Language Modelling

A Language Model represents the language used by a given entity 
(e.g., a particular person, genre, or other well-defined class of text)



A Language Model estimates the probability of any sequence of words
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FORMAL DEFINITION

Let 𝑿 = “Anqi was late for class”

P(𝑿) = 𝑃(“Anqi was late for class”)

𝑤# 𝑤$ 𝑤% 𝑤& 𝑤'

Language Modelling



What is LM used for?

76



Generate Text

77

Language Modelling
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A Language Model is useful for:

Generating Text Classifying Text

• Auto-complete

• Speech-to-text

• Question-answering / chatbots

• Machine translation

• Summarization

• Authorship attribution

• Detecting spam vs not spam

• Grammar Correction

And much more!

Language Modelling
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Scenario: assume we have a finite vocabulary 𝑉

𝑉 ∗ represents the infinite set of strings/sentences that we could 
construct

e.g., 𝑉 ∗= {a, a dog, a frog, dog a, dog dog, frog dog, frog a dog, …}

Data: we have a training set of sentences x ∈ 𝑉 ∗

Problem: estimate a probability distribution:

;
(∈*

∗
𝑝 𝑥 = 1

𝑝 𝑡ℎ𝑒 = 10+$

𝑝 𝑤𝑎𝑡𝑒𝑟𝑓𝑎𝑙𝑙, 𝑡ℎ𝑒, 𝑖𝑐𝑒𝑐𝑟𝑒𝑎𝑚 = 3.2𝑥10+#,
𝑝 𝑡ℎ𝑒, 𝑠𝑢𝑛, 𝑜𝑘𝑎𝑦 = 2.5𝑥10+#%

Slide adapted from Luke Zettlemoyer @ UW 2018

Language Modelling
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“Wreck a nice beach” vs “Recognize speech”

“I ate a cherry” vs “Eye eight uh Jerry!”

“What is the weather today?”

“What is the whether two day?”

“What is the whether too day?”

“What is the Wrether today?”

Motivation
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Important Terminology

a word token is a specific occurrence of a word in a text

a word type refers to the general form of the word, defined by its 
lexical representation

If our corpus were just “I ran and ran and ran”, you’d say we have:

- 6 word tokens [I, ran , and , ran , and , ran]

- 3 word types: {I, ran, and}



Language Modelling
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Naive Approach: unigram model

Assumes each word is independent of all others.

𝑃 𝑤#, … , 𝑤$ =&
%&#

$

𝑝(𝑤𝑡)

P(𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒, 𝒘𝟓) = P(𝒘𝟏), 𝑷(𝒘𝟐), 𝑷 𝒘𝟑 𝑷 𝒘𝟒 𝑷(𝒘𝟓)



Unigram Model
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Let 𝑿 = “Anqi was late for class”
𝑤# 𝑤$ 𝑤% 𝑤& 𝑤'

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350

P(Anqi) = #'
#22,222 = 0.00015

P(was) = #,222
#22,222 = 0.01

P(w4) =
5"!(𝒅)
5"∗(𝒅)

𝑛"!(𝒅) = # of times word 𝒘𝒊 appears in 𝒅

𝑛"∗(𝒅) = # of times any word 𝒘 appears in 𝒅

𝑛"∗(𝒅) = 100,000



Unigram Model
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Let 𝑿 = “Anqi was late for class”
𝑤# 𝑤$ 𝑤% 𝑤& 𝑤'

P Anqi, was, late, for, class = P Anqi P was P late P for P class

= 0.00015 ∗ 0.01 ∗ 0.004 ∗ 0.03 ∗ 0.0035

= 6.3 ∗ 10 − 13

This iterative approach is much more efficient than 
dividing by all possible sequences of length 5
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1. Probabilities become too small

2. Out-of-vocabulary words <UNK>

UNIGRAM ISSUES?

3. Context doesn’t play a role at all

𝑃(“Anqi was late for class”) = 𝑃(“class for was late Anqi”)

Anqi was late for class the

Anqi was late for class the the

Anqi was late for class _____

4. Sequence generation: What’s the most likely next word?
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Solution:

UNIGRAM ISSUES?

log&
%&#

$

𝑝 𝑤𝑡 = .
%&#

$

log(𝑝 𝑤' )

log(10+#22) = −230.26even is manageable

Problem 1:   Probabilities become too small

𝑃 𝑤#, … , 𝑤$ =&
%&#

$

𝑝(𝑤𝑡)
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UNIGRAM ISSUES?

Problem 2:   Out-of-vocabulary words <UNK>

Solution: Smoothing

(give every word’s count some inflation)

P(w) = (! 𝒅 *+
(!∗*+|-|

P(“Anqi”) = #.*+
#//,/// * +|-|

P("COVID19”) = /*+
#//,/// * +|-|

|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)

𝑝(“𝐶𝑂𝑉𝐼𝐷19”) = 0
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UNIGRAM ISSUES?

Problems 3 and 4:   Context doesn’t play a role at all

𝑃(“Anqi was late for class”) = 𝑃(“class for was late Anqi”)

Question: How can we factor in context?
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Bigram LM

Let 𝑿 = “Anqi was late for class”
probability

P(𝑿) = 𝑃(was|Anqi)𝑃(late|was)𝑃(for|late)𝑃(class|for)

Look at pairs of consecutive words

𝑤# 𝑤$ 𝑤% 𝑤& 𝑤'
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Bigram Model

Let 𝑿 = “Anqi was late for class”
𝑤# 𝑤$ 𝑤% 𝑤& 𝑤'

𝑛",": (𝒅) = # of times words 𝒘 and 𝒘′ appear together as a bigram in 𝒅

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350
P(class|for) = P(for, class) = #$

%,222

𝑛","∗(𝒅) = # of times word 𝒘 is the first token of a bigram in 𝒅

𝑛"∗(𝒅) = 100,000

P w:|𝑤 = P ”w,w:” = 5","% (𝒅)
5","∗ (𝒅)
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1. Out-of-vocabulary bigrams are 0 à kills the overall probability

2. Could always benefit from more context but sparsity is an issue 
(e.g., rarely seen 5-grams) 

BIGRAM ISSUES?

3. Storage becomes a problem as we increase the window size

4. No semantic information conveyed by counts (e.g., vehicle vs car)



Why do we commonly 
pad sentences with <s>?

92
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IMPORTANT:

It is common to pad sentences with <S> tokens on each side, which 
serve as boundary markers. This helps LMs learn the transitions 
between sentences. 

Let 𝑿 = “I ate. Did you?”
𝑤# 𝑤$ 𝑤% 𝑤&

𝑿 = “<S> I ate <S> Did you? <S>”
𝑤# 𝑤$𝑤% 𝑤& 𝑤'

à
𝑤< 𝑤=
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Generation

• We can also use these LMs to generate text

• Generate the very first token manually by making it be <S>

• Then, generate the next token by sampling from the probability 

distribution of possible next tokens (the set of possible next

tokens sums to 1)

• When you generate be <S> again, that represents the end of 

the current sentence
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Example of Bigram generation

• Force a <S> as the first token

• Of the bigrams that start with <S>, probabilistically pick one 

based on their likelihoods

• Let’s say the chosen bigram was <S>_The

• Repeat the process, but now condition on “The”. So, perhaps 

the next select Bigram is “The_dog”

• The sentence is complete when you generate a bigram whose 

second half is <S> 
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Language Modelling

Better Approach: n-gram model

The likelihood of any event 
occurring hinges upon all 
prior events occurring

𝑃 𝑥#, … , 𝑥$ =&
%&#

$

𝑝 𝑥% 𝑥%1#, … , 𝑥#)

This compounds for all 
subsequent events, too



How do we measure the 
performance of LMs?

97
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Evaluation

N-gram models seem useful, but how can we measure 
how good they are?

Can we just use the likelihood values?
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Almost!

The likelihood values aren’t adjusted for the length of sequences, 
so we would need to normalize by the sequence lengths.

𝐻 𝐶>?@> =
1
𝑁
;
!A#

5

log2(𝑝 𝑤! )

Evaluation
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Perplexity

The best language model is one that 
best predicts an unseen test set

Perplexity, denoted as 𝑃𝑃, is the inverse probability of the test set, 
normalized by the number of words.

𝑃𝑃 𝑤#, … , 𝑤2 = 𝑝 𝑤#, 𝑤3, … , 𝑤2 1#/2

=
# 1
𝑝 𝑤#, 𝑤3, … , 𝑤2



What does perplexity 
measure / represent?
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Perplexity

Perplexity is also equivalent to the exponentiated, per-word cross-entropy

𝑃𝑃 𝑤#, … , 𝑤2 = 𝑝 𝑤#, 𝑤3, … , 𝑤2 1#/2

=
# 1
𝑝 𝑤#, 𝑤3, … , 𝑤2

= 215, where l = #
2
∑'&#( log2(𝑝 𝑤' )
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Perplexity

Very related to entropy, perplexity measures the uncertainty of the 
model for a particular dataset. So, very high perplexity scores 
correspond to having tons of uncertainty (which is bad).

Entropy represents the average number of bits needed to 
represent each word.

Perplexity represents the branching factor needed to predict each 
next word. That is, the more branches (aka bits) at each step, the 
more uncertainty there is, meaning the worse the model.
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Perplexity

Good models tend to have perplexity scores around 40-100 on 

large, popular corpora.

If our model assumed a uniform distribution of words, then our 

perplexity score would be:

𝑉 = the # of unique word types
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Perplexity

Example: let our corpus 𝑋 have only 3 unique words:  {the, dog, ran} but our 

particular text has a length of 𝑁.

= # 1
1
3

2 =
# 32 = 3

𝑃𝑃 𝑤#, … , 𝑤2 = 𝑝 𝑤#, 𝑤3, … , 𝑤2 1#/2

=
# 1
𝑝 𝑤#, 𝑤3, … , 𝑤2
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Perplexity

More generally, if we have 𝑀 unique words for a sequence of 

length 𝑁.

𝑃𝑃 𝑋 = # 1
1
𝑀

2 =
# 𝑀2 = 𝑀
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Perplexity

Example perplexity scores: when trained on a corpus of 38 million 

words and tested on 1.5 million words:

model perplexity

unigram 962

bigram 170

trigram 109
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Evaluation

Very Important:

• Any given LM must be able to generate the test set (at least). 

Otherwise, it cannot be fairly evaluated (OOV problem).

• When comparing multiple LMs to each other, their vocabularies 

must be the same (e.g., words, sub-words, characters).

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021



Featurized Model
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”passing a _____”

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021

𝑤!+$ 𝑤!+# 𝑤!

passing a

Vx1

+ + =

Vx1 Vx1 Vx1

bias raw scores

softmax =

Vx1

word probs

Lookup tablei-1(𝑤!"#) Lookup tablei-2(𝑤!"$) 

quiz
ball
car
kidney
..
..



Featurized Model
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”passing a _____”

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021

passing a

bias raw scores word probs

Lookup tablei-1(𝑤!"#) Lookup tablei-2(𝑤!"$) 

quiz
ball
car
kidney
..
..

𝑤!+$ 𝑤!+# 𝑤!

Vx1

+ + =

Vx1 Vx1 Vx1

softmax =

Vx1

𝑤!+$ 𝑤!+# 𝑤!

Vx1

+ + =

Vx1
Vx1 Vx1

softmax =

Vx1

# words

vector 
size N

Embedding/ feature matrix 𝝂 is an “input word matrix”. The 𝑖>C column 
of 𝝂 corresponds to each unique word 𝑤𝑖

𝑣𝑖 = 𝝂𝑥𝑖

Vx1NxVNx1 = ∗

Can retrieve Embedding 𝑣 via:
- Slicing the index, or
- Matrix multiply



Unknown Words
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• We still need to handle UNK words. Always.

• Language is always evolving

• Zipfian distribution

• Larger vocabularies require more memory and compute time

How can we handle UNK words in a neural model?



How do we handle UNK 
words in a neural model?

112



Unknown Words

113

• Common ways:

• Frequency threshold (e.g., UNK <= 2)

• Remove bottom N%



Remaining Issues

1. More context while avoiding sparsity, storage, and compute issues

2. No semantic information conveyed by counts (e.g., vehicle vs car)

3. Cannot leverage non-consecutive patterns 

4. Cannot capture combinatorial signals (i.e., non-linear prediction)

Dr. Cornell West ____Dr. West ____

Occurred 25 times Occurred 3 times

P(Chef cooked food) P(Customer cooked food)

P(Customer ate food)P(Chef ate food)

New goals!

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021
114
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UP NEXT

We clearly need:

• denser representations, not |V|

• semantic information

• non-linear power

Neural models, here we come!



Beginning Concepts

Neural Foundation

Attention and Beyond

Outline



Beginning Concepts

Neural Foundation

Attention and Beyond

Outline
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Lecture 4: Neural Language Models



Neural Network Motivation

Non-linear power: using non-linear activation 

functions can allow us to capture rich, combinatorial 

attributes of language

119



Neural Network Motivation

Curse of dimensionality:

• Say our vocab |𝑽| = 100,000

• Naively modelling the joint probability of 10 consecutive, 

discrete random variables (e.g., words in a sentence) yields 

100,000#2 − 1 = 10'2 free parameters.

• Word embeddings reduce the # of parameters and hopefully 

improve the model’s ability to generalize 

Slide adapted from or inspired by Ryan Cotterell ETH-Zurich 2021 120



Bengio (2003)

A Neural Probabilistic Language Model. Bengio et al. JMLR (2003) 121



Bengio (2003)

A Neural Probabilistic Language Model. Bengio et al. JMLR (2003) 122



Bengio (2003)

123

Simultaneously learn the representation and do the modelling!

man

woman

table



Bengio (2003)
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Simultaneously learn the representation and do the modelling!

man

woman

table

• Each circle is a specific floating point scalar

• Words that are more semantically similar to one 
another will have embeddings that are 
proportionally similar, too



Bengio (2003)
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𝑦 = 𝑏 +𝑊𝑥 +𝑈tanh(𝑑 + 𝐻𝑥)

𝜃 = {𝑏,𝑊,𝑈, 𝑑, 𝐻, 𝐶}

𝑥 = [𝐶 𝑤>+% , 𝐶 𝑤>+$ , 𝐶 𝑤>+# ]

predict the most likely 
word w, via softmax



Bengio (2003)
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SAME AS WE DO FOR ALL OF OUR NEURAL NETS

Train the model using gradient descent:

• Use our output probabilities

• Calculate the cross-entropy loss

• Use backprop to calculate gradients

• Update all weight matrices and bias via GD



Bengio (2003) Remaining Issues
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This was not the first neural language model, but it was the first, highly 

compelling model with great results (e.g., beating n-grams)

The softmax output layer is annoyingly slow
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Distributional Semantics

Distributional: meaning is represented by the contexts in which its used

“Distributional statements can cover all of the material of a language 

without requiring support from other types of information”

-- Zellig Harris. Distributional Structure. (1954)

“You shall know a word by the company it keeps”

-- John Rupert Firth. A Synopsis of Linguistics Theory. (1957)
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Auto-regressive language models

Good morning, _____

I bought a _____

I got my ______
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Masked language models

Good morning, _____. Rise and shine!

I bought a _____ from the bakery

I got my ______ license last week



How does CBOW work?
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word2vec

Two approaches:

1. Continuous Bag-of-Words (CBOW)

2. Skip-gram w/ negative sampling



133

word2vec: CBOW

Step 1: Iterate through your entire corpus, with sliding context 

windows of size 𝑵 and step size 𝟏

Step 2: Using all 2N context words, except the center word, try 

to predict the center word.

Step 3: Calculate your loss and update parameters (like always)
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word2vec: CBOW

D x V

𝑦 = 𝑈 ∗sum(𝐻𝑥)

𝑥 = 𝑤>+$, 𝑤>+# , 𝑤>E# , 𝑤>E$

𝑁 = # total context words

𝑉 = # word types

𝑥

𝑃
D x 1

𝐻

V x D
𝐷 = embedding size

𝑈
V x 1

𝑦

V x 1
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word2vec: CBOW

• Linear projection layer

• Non-linear output layer (softmax)

• Training in batches helps a lot



136

word2vec: results

• Smaller window sizes yield embeddings such that high 

similarity scores indicates that the words are interchangeable 

• Larger window sizes (e.g., 15+) yield embeddings such that 

high similarity is more indicative of relatedness of the words.
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word2vec: results

• Words that appear in the same contexts are forced to 

gravitate toward having the same embeddings as one 

another

• Imagine two words, w1 and w2, that never appear together, 

but they each, individually have the exact same contexts with 

other words. w1 and w2 will have ~identical embeddings!

• “The” appears the most. What do you imagine its 

embedding is like?
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word2vec results



How can we evaluate 
word embeddings?

139
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Evaluation

We cheated by looking ahead, so it’s unfair to measure 

perplexity against n-gram or other auto-regressive LM

Intrinsic evaluation:

• Word similarity tasks

• Word analogy tasks

Extrinsic evaluation:

• Apply to downstream tasks (e.g., Natural language inference, 
entailment, question answering, information retrieval)
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Evaluation Word Analogy

Slide adapted from or inspired by Sam Bowman’s NYU NLP 2021



Remaining Challenges
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• Still can’t handle long-range dependencies.

• Each decision is independent of the previous!

• Having a small, fixed window that repeats is a bit forced and 

awkward
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Contextualized, Token-based Representations

Lecture 5: Recurrent Neural Networks



RECAP: L4 These are the learned word embeddings that we 

want to extract and use

144



145

word2vec training

millions of books word2vec word embeddings

aardvark

apple

before

zoo



How can we use the learned 
word embeddings?

146
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word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

“The food was delicious. Amazing!” 4.8/5

the

food

was

delicious

amazing

+

+

+

+

=

average embedding

Feed-forward
Neural Net

average embedding

4.8/5
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word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

daaang

what

supa

lit

+

+

+

=

average embedding

Strengths:

• Can create general-purpose, useful 
embeddings by leveraging tons of 
existing data

• Captures semantic similarity
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word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

daaang

what

supa

lit

+

+

+

=

average embedding

Issues:

• Not tailored to this dataset

• Out-of-vocabulary (OOV) words

• Limited context

• Each prediction is independent from previous

• A FFNN is a clumsy, inefficient way to handle context; 
fixed context that is constantly being overwritten (no 
persistent hidden state).

• Requires inputting entire context just to predict 1 word
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word2vec Results

• SkipGram w/ Negative Sampling tends to outperform CBOW

• SkipGram w/ Negative Sampling is slower than CBOW

• Both SkipGram and CBOW are predictive, neural models that 

take a type-based approach (not token-based).

• Both SkipGram and CBOW can create rich word embeddings 

that capture both semantic and syntactic information.



RNNs
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We especially need a system that:

• Has an “infinite” concept of the past, not just a fixed window

• For each new input, output the most likely next event (e.g., word)



Motivation
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Language often has long-range dependencies:

Emily earned the top grade on the quiz! Everyone was proud of her.

Miquel earned the top grade on the quiz! Everyone was proud of him.



Motivation
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Language is sequential in nature:

• characters form words.

• words form sentences.

• sentences form narratives/documents

NLP folks like to operate at the word level, as that's the smallest, convenient

unit of meaning.



Input layer

Hidden layer

Output layer

𝑊

𝑈

z𝑦#

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

z𝑦$ z𝑦% z𝑦&

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

RNN



Some people find this abstract view useful.

Input layer

Hidden layer

Output layer

𝑊

𝑈

z𝑦!

𝑥!

𝑉

The recurrent loop 𝑉 conveys that the 
current hidden layer is influenced by the 
hidden layer from the previous time step.

The initial hidden layer 𝒉𝟎 can be initialized 
to 0s

RNN



Some people find this abstract view useful.

Input layer

Hidden layer

Output layer

𝑊

𝑈

z𝑦!

𝑥!

𝑉
The recurrent loop 𝑉 conveys that the 
current hidden layer is influenced by the 
hidden layer from the previous time step.

RNN

Definition: an RNN is any neural net that has a 
non-linear combination of the recurrent state 
(e.g., hidden layer) and the input



Input layer

Hidden layer

Output layer

𝑊

𝑈

z𝑦#

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

z𝑦$ z𝑦% z𝑦&

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

Training Process

𝐶𝐸 𝑦$, K𝑦$ 𝐶𝐸 𝑦&, K𝑦& 𝐶𝐸 𝑦', K𝑦'𝐶𝐸 𝑦#, K𝑦#Error

She went to class

𝐶𝐸 𝑦! , K𝑦! = −M
(∈*

𝑦(! log( K𝑦(! )
RNN



Input layer

Hidden layer

Output layer

𝑊

𝑈

z𝑦#

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

z𝑦$ z𝑦% z𝑦&

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

Training Process

𝐶𝐸 𝑦$, K𝑦$ 𝐶𝐸 𝑦&, K𝑦& 𝐶𝐸 𝑦', K𝑦'𝐶𝐸 𝑦#, K𝑦#Error

She went to class

During training, regardless of our output predictions,
we feed in the correct inputs

𝐶𝐸 𝑦! , K𝑦! = −M
(∈*

𝑦(! log( K𝑦(! )
RNN



Training Process

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

She went to class

went? over? class? after?

𝐶𝐸 𝑦$, K𝑦$ 𝐶𝐸 𝑦&, K𝑦& 𝐶𝐸 𝑦', K𝑦'𝐶𝐸 𝑦#, K𝑦#Error

z𝑦

𝐶𝐸 𝑦! , K𝑦! = −M
(∈*

𝑦(! log( K𝑦(! )

Our total loss is simply the average loss across all 𝑻 time steps

RNN



RNN Training Details

Output layer

𝑈 𝑈 𝑈 𝑈
𝑉%

went? over? class?

𝐶𝐸 𝑦', K𝑦'

z𝑦
Using the chain rule, we trace the derivative all the 
way back to the beginning, while summing the results.

𝝏𝑳
𝝏𝑽

𝑉$𝑉#

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

To update our weights (e.g. 𝑽), we calculate the gradient 

of our loss w.r.t. the repeated weight matrix (e.g., 𝝏𝑳
𝝏𝑽
).



Training Details

• This backpropagation through time (BPTT) process is expensive

• Instead of updating after every timestep, we tend to do so 

every 𝑇 steps (e.g., every sentence or paragraph)

• This isn’t equivalent to using only a window size 𝑇

(a la n-grams) because we still have ‘infinite memory’

RNN



We can generate the most likely next event (e.g., word) by sampling from |𝒚

Continue until we generate <EOS> symbol.

RNN: Generation



RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from |𝒚

Continue until we generate <EOS> symbol.

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

<START> “Sorry” Harry shouted,

“Sorry” Harry shouted, panicking



Pros and cons of an RNN?

164



RNNs: Overview

RNN ISSUES?

RNN STRENGTHS?

• Can handle infinite-length sequences (not just a fixed-window)

• Has a “memory” of the context (thanks to the hidden layer’s recurrent loop)

• Same weights used for all inputs, so word order isn’t wonky (like FFNN) 

• Slow to train (BPTT)

• Due to ”infinite sequence”, gradients can easily vanish or explode

• Has trouble actually making use of long-range context



RNNs: Vanishing and Exploding Gradients

𝑈 𝑈 𝑈 𝑈
𝑉%

𝐶𝐸 𝑦', K𝑦'

z𝑦

𝝏𝑳𝟒

𝝏𝑽𝟏

𝑉$𝑉#

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= 𝝏𝑳𝟒

𝝏𝑽𝟑
𝝏𝑽𝟑

𝝏𝑽𝟐
𝝏𝑽𝟐

𝝏𝑽𝟏



RNNs: Vanishing and Exploding Gradients

𝑈 𝑈 𝑈 𝑈
𝑉%

𝐶𝐸 𝑦', K𝑦'

z𝑦

𝝏𝑳𝟒

𝝏𝑽𝟏

𝑉$𝑉#

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= 𝝏𝑳𝟒

𝝏𝑽𝟑
𝝏𝑽𝟑

𝝏𝑽𝟐
𝝏𝑽𝟐

𝝏𝑽𝟏

This long path makes it easy 
for the gradients to become 
really small or large.

If small, the far-away context 
will be ”forgotten.”

If large, recency bias and no 
context.



Exploding Gradients

Source: https://www.deeplearningbook.org/contents/rnn.html Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

https://www.deeplearningbook.org/contents/rnn.html
http://proceedings.mlr.press/v28/pascanu13.pdf
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How does an LSTM yield 
improvements?

170



LSTM

• A type of RNN that is designed to better handle long-range 

dependencies

• In ”vanilla” RNNs, the hidden state is perpetually being rewritten

• In addition to a traditional hidden state h, let’s have a dedicated 

memory cell c for long-term events. More power to relay 

sequence info.



LSTM

At each each time step 𝑡, we have a hidden state ℎ> and cell state 𝑐>:

• Both are vectors of length n

• cell state 𝑐> stores long-term info

• At each time step 𝑡, the LSTM erases, writes, and reads information from the 
cell 𝑐>

• 𝑐> never undergoes a nonlinear activation though, just – and +



LSTM

Input layer

Hidden layer

Output layer

𝑥# 𝑥$

𝐻#

𝐶#

𝑥$

𝐻$

𝐶$

𝐶 and 𝐻 relay long- and short-term memory to the hidden layer, 
respectively. Inside the hidden layer, there are many weights.



LSTM

𝐻>+#

𝐶>+#

𝐻>

𝐶>

𝐻>E#

𝐶>E#
some old memories are “forgotten” some new memories are made

a nonlinear weighted version of the 
long-term memory becomes our 
short-term memory

memory is written, erased, and 
read by three gates – which are 
influenced by 𝒙 and 𝒉

Diagram: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTM



LSTM

It’s still possible for LSTMs to suffer from vanishing/exploding 

gradients, but it’s way less likely than with vanilla RNNs:

• If RNNs wish to preserve info over long contexts, it must delicately 

find a recurrent weight matrix 𝑊C that isn’t too large or small

• However, LSTMs have 3 separate mechanism that adjust the flow of 

information (e.g., forget gate, if turned off, will preserve all info)



LSTM

LSTM ISSUES?

LSTM STRENGTHS?

• Almost always outperforms vanilla RNNs

• Captures long-range dependencies shockingly well

• Has more weights to learn than vanilla RNNs; thus,

• Requires a moderate amount of training data (otherwise, vanilla 
RNNs are better)

• Can still suffer from vanishing/exploding gradients



How can we use LSTMs 
for classification?

178



Sequential Modelling

If your goal isn’t to predict the next item in a sequence, and you rather 

do some other classification or regression task using the sequence, 

then you can:

• Train an aforementioned model (e.g., LSTM) as a language model

• Use the hidden layers that correspond to each item in your 

sequence

IMPORTANT



Sequential Modelling

Input 
layer

Hidden 
layer

Output 
layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

Language Modelling 1-to-1 tagging/classification

Input 
layer

Hidden 
layer

Output 
layer

𝑊

𝑈

z𝑦#

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

z𝑦$ z𝑦% z𝑦&

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

𝑥$ 𝑥% 𝑥& 𝑥'



Sequential Modelling

Many-to-1 classification

Sentiment score

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

z𝑦&

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉



Sequential Modelling

Many-to-1 classification

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

Sentiment score



Summary

• Distributed Representations can be:

• Type-based (“word embeddings”)

• Token-based (“contextualized representations/embeddings”)

• Type-based models include Bengio’s 2003 and word2vec 2013

• Token-based models include RNNs/LSTMs, which:

• demonstrated profound results in 2015 onward.

• it can be used for essentially any NLP task.



RNNs/LSTMs use the left-to-right context and sequentially 

process data.

If you have full access to the data at testing time, why not 

make use of the flow of information from right-to-left, also?

RNN Extensions: Bi-directional LSTMs

184



RNN Extensions: Bi-directional LSTMs

Input layer

Hidden layer

𝑥# 𝑥$ 𝑥% 𝑥& 𝑥# 𝑥$ 𝑥% 𝑥&

ℎ#T ℎ$T ℎ%T ℎ&T ℎ#U ℎ$U ℎ%U ℎ&U

For brevity, let’s use the follow schematic to represent an RNN
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RNN Extensions: Bi-directional LSTMs

Input layer

Hidden layer

Output layer

𝑥# 𝑥$ 𝑥% 𝑥& 𝑥# 𝑥$ 𝑥% 𝑥&

ℎ#T ℎ$T ℎ%T ℎ&T ℎ#U ℎ$U ℎ%U ℎ&U

ℎ#T
ℎ#U

ℎ$T
ℎ$U

ℎ%T
ℎ%U

ℎ&T
ℎ&U

z𝑦# z𝑦$ z𝑦% z𝑦&

Concatenate the hidden layers

186



• Usually performs at least as well as uni-directional RNNs/LSTMs

RNN Extensions: Bi-directional LSTMs

BI-LSTM ISSUES?

BI-LSTM STRENGTHS?

• Slower to train

• Only possible if access to full data is allowed

187



RNN Extensions: Stacked LSTMs

Input layer

Hidden layer #1

𝑥# 𝑥$ 𝑥% 𝑥&

ℎ#T ℎ$T ℎ%T ℎ&T

ℎ&T$ℎ%T$ℎ$T$ℎ#T$

z𝑦# z𝑦$ z𝑦% z𝑦&Output layer

Hidden layer #2

Hidden layers provide an 

abstraction (holds “meaning”). 

Stacking hidden layers provides 

increased abstractions.

188



ELMo: Stacked Bi-directional LSTMs

Illustration: http://jalammar.github.io/illustrated-bert/ 189

http://jalammar.github.io/illustrated-bert/


Illustration: http://jalammar.github.io/illustrated-bert/ 190

http://jalammar.github.io/illustrated-bert/


RECAP: L6

191

𝐻>+#

𝐶>+#

𝐻>

𝐶>

𝐻>E#

𝐶>E#
Forget Gate

Output Gate

Diagram: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Input Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Beginning Concepts

Neural Foundation

Attention and Beyond

Outline



Beginning Concepts

Neural Foundation

Attention and Beyond

Outline
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Sequence Generation

Lecture 7: seq2seq + Attention



Types of Prediction

195

(difficult scenario when your output has

exponential/infinite # of possibilities)

Regression I love hiking!

input output

0.9

Positive or negativeI love hiking!Binary Classification

Multi-class Classification Very positive, positive, neutral,
negative, or very negative

I love hiking!

Structured Prediction I love hiking! PRP VBP NN



Types of Prediction (an independent axis)

196

Unconditioned Prediction: predict some single variable. P(X)

Conditioned Prediction: predict the probability of an output variable,

given the input. P(Y|X)

Example: language modelling. X = “I like hiking!”

Example: text classification. Y = positive. X = “I like hiking!”



Types of Prediction (an independent axis)

197

Unconditioned Prediction: predict some single variable. P(X)

Conditioned Prediction: predict the probability of an output variable,

given the input. P(Y|X)

Example: language modelling. X = “I like hiking!”

Example: text classification. Y = positive. X = “I like hiking!”

(un)conditioned is referring to if 
you’re entire model is predicated 
upon some particular input. 



Types of Prediction (an independent axis)

198

Unconditioned Prediction: predict some single variable. P(X)

Conditioned Prediction: predict the probability of an output variable,

given the input. P(Y|X)

Example: language modelling. X = “I like hiking!”

Example: text classification. Y = positive. X = “I like hiking!”

Language modelling is unconditional 

prediction, but one could do so by making 

use of conditional probabilities of X



Types of Unconditional Prediction

199Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021



Types of Unconditional Prediction

200

Formally, a language model estimates the probability of a 

sequence, so this is illegal. It ”cheats”, and we call this style 

masked language models (not proper probability distribution and 

they don’t estimate sequences)

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021



Types of Conditional Prediction

201

Many-to-1 classification

𝑃 𝑦 𝑋

Many-to-many classification

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021



202

We want to produce a variable-length output
(e.g., n à m predictions)

Thank you for visiting! Děkujeme za návštěvu!



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#V ℎ$V ℎ%V ℎ&V

The brown dog ran

ENCODER RNN

ℎ#W ℎ$W

<s> chien brun a

DECODER RNN

couru

ℎ%W ℎ&W ℎ'W

Le

ℎ<W

Le chien brun a couru <s>

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#V ℎ$V ℎ%V ℎ&V

The brown dog ran

ENCODER RNN

ℎ#W ℎ$W

<s> chien brun a

DECODER RNN

couru

ℎ%W ℎ&W ℎ'W

Le

ℎ<W

z𝑦# z𝑦$ z𝑦% z𝑦& z𝑦' z𝑦<



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#V ℎ$V ℎ%V ℎ&V

The brown dog ran

ENCODER RNN

ℎ#W ℎ$W

<s> chien brun a

DECODER RNN

couru

ℎ%W ℎ&W ℎ'W

Le

ℎ<W

z𝑦# z𝑦$ z𝑦% z𝑦& z𝑦' z𝑦<

Training occurs like RNNs typically do; the 
loss (from the decoder outputs) is calculated, 
and we update weights all the way to the 
beginning (encoder)



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#V ℎ$V ℎ%V ℎ&V

The brown dog ran

ENCODER RNN

ℎ#W ℎ$W

<s> chien brun a

DECODER RNN

couru

ℎ%W ℎ&W ℎ'W

Le

ℎ<W

z𝑦# z𝑦$ z𝑦% z𝑦& z𝑦' z𝑦<

Testing generates decoder outputs one word 
at a time, until we generate a <S> token.

Each decoder’s 6𝒚𝒊 becomes the input 𝒙𝒊"𝟏



What’s a serious weakness 
with this seq2seq approach?

207



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#V ℎ$V ℎ%V ℎ&V

The brown dog ran

ENCODER RNN

ℎ#W ℎ$W

<s> chien brun a

DECODER RNN

couru

ℎ%W ℎ&W ℎ'W

Le

ℎ<W

z𝑦# z𝑦$ z𝑦% z𝑦& z𝑦' z𝑦<

It’s crazy that the entire “meaning” of the 1st sequence 
is expected to be packed into this one embedding, 
and that the encoder then never interacts w/ the 
decoder again. Hands free.



Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays attention to 

a distribution of all of the encoder’s hidden states?

Intuition: when we (humans) translate a sentence, we don’t just 

consume the original sentence, reflect on the meaning of the last 

word, then regurgitate in a new language; we continuously think 

back at the original sentence while focusing on different parts.



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers? 

ℎ#V ℎ$V ℎ%V ℎ&V ℎ#W

Separate FFNN

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) 
and all of the encoder’s hidden layers!

ℎ&V ℎ#W

𝑒& −0.5

<s>

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers? 

ℎ#V ℎ$V ℎ%V ℎ&V ℎ#W

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) 
and all of the encoder’s hidden layers!

𝑒& −0.5

Attention (raw scores)

𝑒% 0.2
𝑒$ 0.9
𝑒# 1.5

Attention (softmax’d)

𝑎!# =
exp(𝑒!)

∑!X exp(𝑒#)<s>

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers? 

ℎ#V ℎ$V ℎ%V ℎ&V ℎ#W

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) 
and all of the encoder’s hidden layers!

𝑒& −0.5

Attention (raw scores)

𝑒% 0.2
𝑒$ 0.9
𝑒# 1.5

Attention (softmax’d)

𝑎$$ = 0.51
𝑎%$ = 0.28
𝑎&$ = 0.14
𝑎&$ = 0.07

<s>

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ#V ℎ$V ℎ%V ℎ&V ℎ#W

Attention (softmax’d)

𝑎$$ = 0.51
𝑎%$ = 0.28
𝑎&$ = 0.14
𝑎&$ = 0.07

𝑎## 𝑎$# 𝑎%# 𝑎&#

We multiply each encoder’s hidden layer 

by its 𝑎'$ attention weights to create a 
context vector 𝑐$(

𝑐#W

<s>

DECODER RNN



seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ#V ℎ$V ℎ%V ℎ&V

<s>

[ℎ#W; 𝑐#W]

𝑐'W

𝑎#' 𝑎$' 𝑎%' 𝑎&'

REMEMBER: each attention weight 𝑎'
) is based on the decoder’s current hidden state, too. 

z𝑦#
Le

Le

[ℎ$W; 𝑐$W]

z𝑦$
chien

[ℎ%W; 𝑐%W]

z𝑦%
brun

chien

[ℎ&W; 𝑐&W]

z𝑦&
a

brun

[ℎ'W; 𝑐'W]

z𝑦&
couru

a

DECODER RNN



215Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Popular Attention Scoring functions:



seq2seq + Attention

Attention:

• greatly improves seq2seq results

• allows us to visualize the 

contribution each encoding word 

gave for each decoder’s word

Image source: Fig 3 in Bahdanau et al., 2015

https://arxiv.org/pdf/1409.0473.pdf


Image Captioning

Input: image

Output: generated text

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)



218

• LSTMs yielded state-of-the-art results on most NLP tasks (2014-2018)

• seq2seq+Attention was an even more revolutionary idea (Google 
Translate used it)

• Attention allows us to place appropriate weight to the encoder’s 
hidden states

• But, LSTMs require us to iteratively scan each word and wait until we’re 
at the end before we can do anything

SUMMARY
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And the power of Attention

Lecture 8: Machine Translation



220

Machine Translation (MT) is an NLP task that aims 
to convert text from one language to another.

Thank you for visiting! Děkujeme za návštěvu!

𝒙 𝒚
(source language) (target language)

Many slides in the MT section were inspired by or adapted from Abigail See’s Stanford CS224N lecture

http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture07-nmt.pdf


221

Machine Translation (MT) is an NLP task that aims 
to convert text from one language to another.

9th century: Al-Kindi (cryptographer)

17th century: René Descartes theorized about a universal, symbolic language 

1946: Warren Weaver had a seminal publication

1950s: First huge efforts; MIT, IBM, US Government. Motivated by the Cold War.

1990s – 2014: Statistical MT.

2014 – present: Neural MT (Deep Learning)



222

We want to produce a variable-length output
(e.g., n à m predictions)

Thank you for visiting! Děkujeme za návštěvu!



223

What’s an issue w/ greedy decoding?

Greedy Decoding



224

We can stop generating candidates when sequences 

are of length N, or when we have M completed

sequences

Beam Search Decoding

Must normalize by lengths!



Pros and cons of Neural MT 
(compared to previous 

approaches)

225
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Pros:

• Better performance

• Uses context more robustly

• Better phrases

• Single model that can be optimized end-to-end 

(no subcomponents)

• Way less manual, feature engineering

Neural MT



227

Cons:

• Not too interpretable

• Hard to control/ force any Language-specific aspect

• A vanilla seq2seq approach can have gradient issues

Neural MT



228

BLEU: A similarity metric that compares the generated machine

translation to a human-produced translation.

Uses n-gram precision (e.g., n=1,2,3,4,5)

MT Evaluation

Target: the dog ran fast 

Computer Generated: the dog

Adds a penalty for translations that are too short (akin to recall) or over-
representative (e.g., can‘t produce “the the the” and game it) 

https://cloud.google.com/translate/automl/docs/evaluate has a nice example

https://cloud.google.com/translate/automl/docs/evaluate


229

2014 - present: NMT

SUMMARY

• Became SOTA in just 2 years

• OOV issues still need to be handled

• Susceptible to training data, as always (domain mismatch issues)

• Long-context is always difficult

• Low-resource languages still remain a challenge

• Biases from training data



• seq2seq doesn’t have to use RNNs/LSTMs

• seq2seq doesn’t have to be used exclusively for NMT

• NMT doesn’t have to use seq2seq

(but it’s natural and the best we have for now)

CHECKPOINT
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From Attention to Self-Attention

Lecture 9: Self-Attention



Goals

• Each word in a sequence to be transformed into a rich, abstract 

representation (context embedding) based on the weighted sums of 

the other words in the same sequence (akin to deep CNN layers)

• Inspired by Attention, we want each word to determine, “how much 

should I be influenced by each of my neighbors”

• Want positionality



Self-Attention

Input vectors

The brown dog ran

z1

Output 
representation

z2 z3 z4

??????

x1 x2 x3 x4

Self-Attention’s goal is to create 

great representations, zi, of the input



Self-Attention

The brown dog ran

z1

Output 
representation

z1 will be based on a weighted 

contribution of x1, x2, x3, x4

x1 x2 x3 x4

Input vectors

Self-Attention’s goal is to create 

great representations, zi, of the input

𝑎## 𝑎$# 𝑎%# 𝑎&#

𝒂𝒊𝟏 is “just” a weight. More is 

happening under the hood, but 

it’s effectively weighting 

versions of x1, x2, x3, x4



Self-Attention

The brown dog ran
x1 x2 x3 x4

Under the hood, each xi has 3 
small, associated vectors. For 
example, x1 has:
• Query q1

• Key k1

• Value v1

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 1: Our Self-Attention Head has just 3 weight 
matrices Wq, Wk, Wv in total. These same 3 weight 
matrices are multiplied by each xi to create all vectors:

qi = wq xi
ki = wk xi
vi = wv xi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how 
much attention to pay to each respective ”word” vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how 
much attention to pay to each respective ”word” vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how 
much attention to pay to each respective ”word” vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how 
much attention to pay to each respective ”word” vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘') and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .87
a2 = 𝝈(𝒔𝟐/𝟖)= .12

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘') and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .87
a2 = 𝝈(𝒔𝟐/𝟖)= .12

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0 Instead of these ai values directly 
weighting our original xi word vectors, 
they directly weight our vi vectors.



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z1 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 4: Let’s weight our vi vectors and simply sum them up! 

= 0.87⋅v1 + 0.12⋅v2 + 0.01⋅v3 + 0⋅v4

z1



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z2 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!
z2



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z3 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!

z3



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z4 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!
z4



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Tada! Now we have great, new representations zi via a self-attention head

z4z3z2z1

Self-attention Head



Self-Attention may seem strikingly 
like Attention in seq2seq models

Q: What are the key, query, value vectors in the Attention setup?
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From Self-Attention to Transformers

Lecture 10: Transformers



The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new 
representations, and this 
entire process is called a 
Transformer Encoder

Problem: there is no concept 
of positionality. Words are 
weighted as if a “bag of 
words”

Solution: add to each input 
word xi a positional encoding 
~ sin 𝑖 cos(𝑖)

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections   +LayerNorm



Words can relate in many ways, so it’s restrictive to 
rely on just one Self-Attention Head in the system.

Let’s create Multi-headed Self-Attention

A Self-Attention Head has just one set of 
query/key/value weight matrices wq, wk, wv



The brown dog ran
x1 x2 x3 x4

To recap: all of this looks 
fancy, but ultimately it’s 
just producing a very 
good contextualized 
embedding riof each 
word xi

Why stop with just 1 
Transformer Encoder? 
We could stack several!

Transformer Encoder

r2

Encoder #1

Encoder #2

Encoder #3

r3 r4r1



<s> El perro marrón
x1 x2 x3 x4

Masked Self-attention Head

Decoder

Transformer Decoder
r2 r3

FFNN

r4r1

+ x Residual Connections   +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C z4A z4B z4C

=



Where does the Decoder 
Attend to?

253



Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 Transformer Decoders are 
identical to the Encoders, 
except they have an 
additional Attention Head
in between the Self-
Attention and FFNN
layers.

This additional Attention 
Head focuses on parts of 
the encoder’s 
representations.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE



Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The Transformer
Decoders have positional 
embeddings, too, just like 
the Encoders.

Critically, each position is 
only allowed to attend to 
the previous indices. This 
masked Attention 
preserves it as being an 
auto-regressive LM.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer IMPORTANT



https://jalammar.github.io/illustrated-transformer/



Loss Function: cross-entropy (predicting translated word)

Training Time: ~4 days on (8) GPUs



• What if we don’t want to decode/translate?

• Just want to perform a particular task (e.g., classification)

• Want even more robust, flexible, rich representation!

• Want positionality to play a more explicit role, while not 

being restricted to a particular form (e.g., CNNs)
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The Power of Transformer Encoders

Lecture 11: BERT



Bidirectional Encoder Representations from Transformers

BERT

Let’s only use Transformer Encoders, no Decoders
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Types of Data

261

UNLABELLED

• Raw text (e.g., web pages)

• Parallel corpora (e.g., for translations)

LABELLED

• Linear/unstructured

• N-to-1 (e.g., sentiment analysis)

• N-to-N (e.g., POS tagging)

• N-to-M (e.g., summarization)

• Structured

• Dependency parse trees

• Constituency parse trees

• Semantic Role Labelling



Types of Data
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UNLABELLED

• Raw text (e.g., web pages)

• Parallel corpora (e.g., for translations)

LABELLED

• Linear/unstructured

• N-to-1 (e.g., sentiment analysis)

• N-to-N (e.g., POS tagging)

• N-to-M (e.g., summarization)

• Structured

• Dependency parse trees

• Constituency parse trees

• Semantic Role Labelling

We most often about 

this type of data



Types of Data
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Labelled data is a scarce commodity.

How can we get more of it?

How can we leverage more plentiful, other data (either 

labelled or unlabelled) so as to make better use of our 

limited labelled data? 



Types of Learning
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One axis that hinges upon the type of 

data we have:

Supervised Learning

Unsupervised Learning

Self-supervised Learning

Semi-supervised Learning

One axis that refers to our style of 

using/learning our data:

Multi-task Learning

Transfer Learning

Pre-training



Types of Learning

265

One axis that refers to our style of 

using/learning our data:

Multi-task Learning = general term for training on multiple tasks 

Transfer Learning = type of multi-task learning where we only care about 

one of the tasks

Pre-training = type of transfer learning where we first focus on one objective

See chalkboard for example



Multi-task heuristics

266

• Ideally, your tasks should be closely related (e.g., constituency parsing and 

dependency parsing)

• Multi-task learning may help improve the task that has limited data

• General domain à specific domain (e.g., all of the web’s text -> law text)

• High-resourced language à low-resourced language (e.g., English -> Igbo)

• Unlabelled text à labelled text (e.g., language model -> named entity recognition)

Inspired by or based on http://www.phontron.com/class/anlp2021/assets/slides/anlp-08-pretraining.pdf



Many deep learning models, including pre-trained ones with cute names 

(e.g., ELMo, BERT, ALBERT, GPT-3), refer to an exact combination of:

• The model’s architecture

• The training objective to pre-train (e.g., MLM prediction)

• The data (e.g., Google BooksCorpus, Wikipedia)

Many people abuse the terms and swap out components.

Naming convention
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What are the two training 
objectives of BERT?

268



<CLS> brown dog

x1 x2 x3 x4

BERT has 2 training objectives:

Encoder #1

Encoder #2

Encoder #8
1. Predict the Masked word (a la CBOW)

15% of all input words are randomly masked.

• 80% become [MASK]

• 10% become revert back

• 10% become are deliberately corrupted 
as wrong words

BERT

BERT

The

brown
lazy

playful

0.92
0.05
0.03
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<CLS> brown dog

x1 x2 x3 x4

BERT has 2 training objectives:

Encoder #1

Encoder #2

Encoder #8
2. Two sentences are fed in at a time. 
Predict the if the second sentence of 
input truly follows the first one or not.

BERT

BERT

The

brown
lazy

playful

0.92
0.05
0.03
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BERT

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

NOTE: BERT also embeds the inputs 

by their WordPiece embeddings.

WordPiece is a sub-word tokenization 

learns to merge and use characters 

based on which pairs maximize the 

likelihood of the training data if 

added to the vocab.
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Three ways to Attend

Encoder-Decoder Attention

Encoder Self-Attention

Decoder Masked Self-Attention



BERT (alternate view)
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https://jalammar.github.io/illustrated-bert/



BERT (alternate view)
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https://jalammar.github.io/illustrated-bert/



BERT’s inputs
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https://arxiv.org/pdf/1810.04805.pdf



RECAP: L11

276
https://jalammar.github.io/illustrated-transformer/

BERT is easy to fine-tune on 
any other classification task

• replace the top layer

• ensure your inputs are 
tokenized the same way as 
training, and no OOV 
tokens

• usually best to allow the 
original BERT weights to 
adjust, too (don’t freeze)



Extensions
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Transformer-Encoders

• BERT

• ALBERT (A Lite BERT …)

• RoBERTa (A Robustly Optimized BERT …)

• DistilBERT (small BERT)

• ELECTRA (Pre-training Text Encoders as Discriminators not Generators) 

• Longformer (Long-Document Transformer)



Extensions

278

Autoregressive

• GPT (Generative Pre-training)

• CTRL (Conditional Transformer LM for Controllable Generation)

• Reformer

• XLNet



Harvard
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Generative pre-training

Lecture 12: GPT-2



Transformer

What if we want to generate a new output sequence?

GPT-2 model to the rescue!

Generative Pre-trained Transformer 2

280



Does GPT have an encoder, 
decoder, both, or none?
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GPT-2 (a Transformer)

GPT-2 uses only Transformer Decoders (no Encoders) to generate 
new sequences from scratch or from a starting sequence

282
Image by http://jalammar.github.io/illustrated-gpt2/



How is masking performed?
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GPT-2 (a Transformer)

• There is no Attention (since there is no Transformer Encoder to 

attend to). So, there is only Self-Attention.

• As it processes each word/token, it masks the “future” words and 

conditions on and attends to the previous words

284
Image by http://jalammar.github.io/illustrated-gpt2/



GPT-2 (a Transformer)

As it processes each word/token, it masks the “future” words and 

conditions on and attends to the previous words

285
Image by http://jalammar.github.io/illustrated-gpt2/



GPT-2 (a Transformer)

286
Image by http://jalammar.github.io/illustrated-gpt2/



GPT-2 (a Transformer)

• Technically, it doesn’t use words as input but Byte Pair Encodings

(sub-words), similar to BERT’s WordPieces.

• Includes positional embeddings as part of the input, too.

• Easy to fine-tune on your own dataset (language)
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GPT-2 (a Transformer)

288
Image by http://jalammar.github.io/illustrated-gpt2/



GPT-2’s Masked Attention

289
Image by http://jalammar.github.io/illustrated-gpt2/

For efficiency, we can still calculate all query-key calculations 

with matrix multiplications, then mask before softmax’ing.



GPT-2’s Masked Attention

290
Image by http://jalammar.github.io/illustrated-gpt2/

For efficiency, we can still calculate all query-key calculations 

with matrix multiplications, then mask before softmax’ing.



GPT-2’s Masked Attention

291
Image by http://jalammar.github.io/illustrated-gpt2/

For efficiency, we can still calculate all query-key calculations 

with matrix multiplications, then mask before softmax’ing.



GPT-2’s

292
Image by http://jalammar.github.io/illustrated-gpt2/

Representations are propagated upwards through the network



GPT-2’s

293
Image by http://jalammar.github.io/illustrated-gpt2/

Self-attention is otherwise identical to what we saw in BERT



GPT-2’s

294
Image by http://jalammar.github.io/illustrated-gpt2/

Can have Multiple Self-Attention heads



GPT-2’s

295
Image by http://jalammar.github.io/illustrated-gpt2/

Each Self-Attention head is responsible for exactly 1 resulting, 

output embedding



GPT-2’s

296
Image by http://jalammar.github.io/illustrated-gpt2/

Remember, these Masked Self-Attention layers are fed into a FFNN



GPT-2’s

297
Image by http://jalammar.github.io/illustrated-gpt2/
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Image by http://jalammar.github.io/illustrated-gpt2/

Each Decoder block has its own weights (e.g., 𝑊Y,𝑊Z,𝑊[)

But the entire model only has 1 token-embedding weight matrix and 
positional encoding weight matrix. This helps all the blocks to work 
together and supplement their captured aspects
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GPT-1

• Model: Transformer Decoders we just described

• Objective: next word prediction (cross-entropy loss)

• Data: BooksCorpus (7k books from a variety of genres, 
such as Adventure, Fantasy, and Romance)



300https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf



What insights did GPT-2 
yield over GPT-1?
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GPT-2 is identical to GPT-1, but:

• has Layer normalization in between each sub-block (as 
we’ve already seen)

• Vocab extended to 50,257 tokens and context size 
increased from 512 to 1024

• Data: 8 million docs from the web (Common Crawl), 
minus Wikipedia



303

You can finagle the system to yield synthetic 
predictions.

Children’s Book Test (CBT) is a classification task. 
Fill-in-the-blank, and you predict which of the 10 
possible choices is correct.

You can compute the probability of each choice + 
its ending.



304

You can finagle the system to yield synthetic 
predictions.

LAMBADA dataset tests model’s ability to 
understand long-range dependencies.

Task: predict the final word of sentences which 
humans need 50+ tokens of context in order to 
accurately predict.



GPT-2 Results
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You can finagle the system to yield synthetic 
predictions.

Summarization. The add the text “TL;DR:” after an 
article, then generate 100 tokens with top-2 
random sampling, then extract the first 3 
sentences.
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GPT-2 Results



GPT-2 Results

308



GPT-2 Results

Easy to fine-tune on your own dataset (language)

SYSTEM PROMPT (HUMAN-WRITTEN)
A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its whereabouts 
are unknown.

MODEL COMPLETION (MACHINE-WRITTEN, FIRST TRY)
The incident occurred on the downtown train line, which runs from Covington and Ashland stations.

In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal 
Railroad Administration to find the thief.

“The theft of this nuclear material will have significant negative consequences on public and 
environmental health, our workforce and the economy of our nation,” said Tom Hicks, the U.S. Energy 
Secretary, in a statement. “Our top priority is to secure the theft and ensure it doesn’t happen again.”
The stolen material was taken from the University of Cincinnati’s Research Triangle Park nuclear 
research site, according to a news release from Department officials.
The Nuclear Regulatory Commission did not immediately release any information. 309



GPT-2 is:

• trained on 40GB of text data (8M webpages)!

• 1.5B parameters

GPT-3 is an even bigger version (175B parameters) of GPT-2, but 

isn’t open-source

Yay, for transfer learning!

GPT-2 (a Transformer Decoder)
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There are several issues to be aware of:

• It is very costly to train these large models. The companies who 

develop these models easily spend an entire month training one 

model, which uses incredible amounts of electricity.

• BERT alone is estimated to cost over $1M for their final models

Concerns

Source: https://arxiv.org/pdf/2004.08900.pdf
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It is very costly to train these large models.

Concerns

Source: https://arxiv.org/pdf/2004.08900.pdf
312



Concerns
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• Further, these very large language models have been shown to 

be biased (e.g., in terms of gender, race, sex, etc).

• Converting from one language to another often converts gender 

neutral pronouns to sexist stereotypes

• Using these powerful LMs comes with risks of producing such 

text and/or evaluating/predicting tasks based on these biased 

assumptions.

• People are researching how to improve this

Concerns
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• As computer-generated text starts to become indistinguishable 

from authentic, human-generated text, consider the ethical 

impact of fraudulently claiming text to be from a particular 

author.

• If used maliciously, it can easily contribute toward the problem of 

Fake News

Concerns
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Summary

• NLP is incredibly fun, with infinite number of problems to work on

• Neural models allow us to easily represent words as distributed 

representations

• Input unique word (or sub-words) as tokens

• Recurrent models can be for capturing the sequential nature, but it puts 

too much responsibility on the model to keep track of the entire 

meaning and to pass it onwards
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Summary

• Transformers allow for more complete, free access to everything 

(unless masked) at once

• It’s very useful to pre-train a large unsupervised/self-supervised LM 

then fine-tune on your particular task (replace the top layer, so that it 

can work)
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Outstanding Questions

• What is the model actually learning à probing tasks/interpretability

• biases exist within data & model. How can we improve this? à debiasing

• How can we make models faster, smaller, more robust? à distillation, robustness

• Can we better understand the sensitivity of models and protect against 
vulnerabilities? à adversarial NLP

• How can we better handle low-resource/scarce/unlabelled data?

• How can we get better at complex tasks? (e.g., coreference resolution, tasks that 
require commonsense reasoning and leveraging real-world knowledge)

• How can we get better at long-form documents, mixed-mediums? (e.g., tabular 
data, images, structured text such as scientific papers)
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