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The Deep Learning Revolution

' Translation

' Google's Al translation system is
approachlng human level accuracy
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by Will Douglas Heaven October 16,2018
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The Deep Learning Revolution

Does this mean lanqguage undlerstandling is nearly solved?

What are the remaining challenges? \

Human Performance: 902 90.3

_________ - — — — — — — — — — — —_ 8 _0_
084.6 o §9°3| A 32 Google Al
eces OUO0O0(QIe
# Goog .
Microsoft

® Baseline

+1 SuperGLUE

Jul 19Aug 19 Jan ‘20 Jan ‘21



Is Natural Language Understanding Nearly Solved?

)
Pre-training B K /
y & \
7w\ A
,) : \
".\ ~ .

32 Google Al



Is Natural Language Understanding Nearly Solved?

)
Pre-training J§ K ”
- = N
Q Y \ 4
.",‘.\ ~ .

32 Google Al

Syntax
Word meanings
Factual Knowledge




Is Natural Language Understanding Nearly Solved?

= !
= A
8 .

Pre-training @ A » Language Model
T AR ¢

—
w —
e
' -~

32 Google Al

Syntax
Word meanings
Factual Knowledge




Is Natural Language Understanding Nearly Solved?

Pre-training Ve .- )/ ixiprpiA — Fine-tuning:

N

Language Model

! ! r 1 1

The chocolate cake is amazing

32 Google Al

Syntax
Word meanings
Factual Knowledge




Is Natural Language Understanding Nearly Solved?

5.4% 94.6%

Pre-training

"' .
. A
’ zf =
- \
g - . :
1, % - L
» - ) 5
i N\ W\
¢ | Y 2 Y . N
, s . :
¥ .
[ 1
|

1
A ) é
N/ESEY N\ 1 \ T 1 1

The chocolate cake is amazing

-
N F7
- ‘e
y P
”
),.

—

ey,

32 Google Al

Syntax
Word meanings
Factual Knowledge




Is Natural Language Understanding Nearly Solved?

Pre-training @

-

32 Google Al

Syntax
Word meanings
Factual Knowledge

5.4% 94.6%

T

Language Model

! ! r 1 1

The chocolate cake is amazing

Understanding the task
Learning to solve the task



Is Natural Language Understanding Nearly Solved?

5.4% 94.6%

T

Language Model

! ! r 1 1

The chocolate cake is amazing

Pre-training : ' Ve ST ‘_\ WIKiPEDIA —P Fine-tuning:

32 Google Al
Syntax Understanding the task
Word meanings Learning to solve the task
Factual Knowledge
What are the remaining challenges?

? Generalization to unknown situations
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Analyzing the Behavior of Visual Question Answering Models. Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. EMNLP 2016.
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Analyzing the Behavior of Visual Question Answering Models. Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. EMNLP 2016.
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Humans generalize from few examples

The cat drinks.

Abstract cat

The cat sleeps.

The cat eats.




The cat eats.

The cat eats.
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Natural languageiis...

Ambiguous

Stevie Wonder
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Kidney surgery is performed under general anesthesia
People are unconscious under general anesthesia
Performing actions requires being conscious
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NWT DY LI F
= yogurt with grass ¥

grass-fed yogurt

& Yogurt is typically made of cow milk
> Cows eat grass



What is Commonsense?

\

| The basic level of practical knowledge and reasoning |
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Introductory Tutorial on Commonsense Reasoning. Maartensap. Nered Shwartz, Antoine Bosselut, Dan Roth, and Yejin Choi. ACL 2020.
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Commonsense Timeline

John MacCarthy Marvin Minsky Claude Shannon Ray Solomonoff Alan Newell

Herbert Simon Arthur Samuel Oliver Selfridge Nathaniel Rochester Trenchard More
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Commonsense Timeline

” Reasoning by search — combinatorial explosion

> Lack of commonsense knowledge
and reasoning abilities

> Rigidity of symbolic reasoning

1956

> weak computing power

1974

> not enough data (and no crowdsourcing)

» weaker computational models



Commonsense Timeline

7 Expert systems

> Slow progress

1956 1980

1974 2011
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Path to commonsense?

Brute force larger networks with deeper layers?
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Path to commonsense?

Brute force larger networks with deeper layers?

You don’t reach the moon
by making the tallest building in the world taller
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1950: Turing Test

Can a human judge distinguish between a human and
a machine following a short conversation with each?

Alan Turing



1950: Turing Test

Can a human judge distinguish between a human and
a machine following a short conversation with each?

Alan Turing

e Loebner Prize (since 1990s)
e« Winner of 2014: a bot named “Eugene Goostman”, simulating a 13-year-old Ukrainian boy, won
« Recommended reading: hitps://artistdetective.wordpress.com/, “The most human human”
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Winograd Schema Challenge (WSC)

The winograd schema challenge. Hector Levesque, Ernest Davis, and Leora Morgenstern. AAAI 2012.
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(b)The demonstrators

The city councilmen refused the demonstrators a permit
because they feared violence. Who is “they”?

(a) The city councilmen
(b)The demonstrators

The winograd schema challenge. Hector Levesque, Ernest Davis, and Leora Morgenstern. AAAI 2012.
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More benchmarks

Social commonsense Physical commonsense

e 2

Temporal commonsense g

Even more benchmarks: https://commonsense.run/

Commonsense reading comprehension
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Reasoning about Social Situations
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Reasoning about Social Situations

Alex spilt food all over the floor and
it made a huge mess.

. y,

{ What will Alex want to do next? ]

’ run around in the mess mop up the mess

https://leaderboard.allenai.org/socialiga
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Reasoning about Social Situations

Alex spilt food all over the floor and
it made a huge mess.

. y,

{ What will Alex want to do next? ]

’ run around in the mess mop up the mess

less likely more likely

https://leaderboard.allenai.org/socialiga
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Physical
[OF!

Reasoning about Physical Properties of the World

" To separate egg whites from the yolk \
using a water bottle, you should

\ W,
www.youtube.com » watch
Separating Egg Yolks With A Water Bottle - YouTube
e SO EZTV ONLINE is the "How To" channel that combines entertainment with
{ @T’ﬁ' information. We'll show you the ...
0:50 Bl Oct. 19, 2015 - Uploaded by eztv online
| 4

Squeeze the water bottle and press _Place the water bottle and press |
it against the yolk. Release, which against the yolk. Keep pushing, which
creates suction and lifts the yolk. eates suction and lifts the yolk.

less likely more likely
https://leaderboard.allenai.org/physicaliga
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COPA: Choice of Plausible Alternatives

The man broke his toe.

‘,. A What was the cause?

n A
He got a hole in his sock. He dropped a hammer on his foot.

less likely more likely




RocStories

(Karen was assigned a roommate her first year of
college. Her roommate asked her to go to a
nearby city for a concert. Karen agreed happily.

The show was absolutely exhilarating.
. Y,

[
Karen hated her roommate. Karen became good friends with her roommate.
less likely more likely

https://www.cs.rochester.edu/nlp/rocstories/
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Discussion:
Advantages and Disadvantages
of Multiple-Choice Benchmarks
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Reliable Evaluation

QP &
I~ Discriminative ¢ 1 Generative tasks:
tasks: ~\1,_,
\/ Easy to evaluate \/ More nuanced & flexible than pre-defined labels
x Models are right for the wrong / More similar to human reasoning process
reasons (no “answer choices”)

v Infinite answer space
(no “guessing” of correct answer)

x No reliable automatic evaluation metric

25



CommonGen

Concept-Set: a collection of objects/actions.

\

dog | frisbee | catch | throwé

Generative Commonsense Reasoning

I
v

T e

- A dog leaps to catch a thrown frisbee. [Humans]
- The dog catches the frisbee when the boy throws it. '

- A man throws away his dog 's favorite frisbee expecting him to :
_ catch it in the air. R

GPT2: A dog throws a frisbee at a football player. ~ [Machines]
UnilLM: Two dogs are throwing frisbees at each other . :
BART: A dog throws a frisbee and a dog catches it. |

T5: dog catches a frisbee and throws it to a dog G

https://inklab.usc.edu/CommonGen/

CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning.
Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang Ren. Findings of EMNLP 2020.
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Path to commonsense

Reasoning engine
Neural J SNY

Benchmarks . with
Representations
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Grandma’s glasses

Tom’s grandma was reading a new book, when she dropped her glasses.

She couldn’t pick them up, so she called Tom for help.

Tom rushed to help her look for them, they heard a loud crack.

They realized that Tom broke her glasses by stepping on them.

Promptly, his grandma yelled at Tom to go get her a new pair.



Humans reason about the world with
mental models [Graesser, 1994]
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Humans reason about the world with
mental models [Graesser, 1994]

Commonsense resources

aim to be a bank of
knowledge for machines to
be able to reason about the
world in tasks

Personal

, World knowledge
experiences

and commonsense




Tom’s grandma was reading a new book, when she dropped her glasses.

She couldn’t pick them up, so she called Tom for help.

Tom rushed to help her look for them, they heard a loud crack.

They realized that Tom broke her glasses by stepping on them.

Promptly, his grandma yelled at Tom to go get her a new pair.



Tom’s grandma was reading a new book, when she dropped her glasses.

She couldn’t pick them up, so|she called Tom for help
QWIII

Tom|rushed to help her|look for them, they heard a loud crack.

They realized that{Tom broke her glasses by stepping on them.

Q will WanD\
Promptly, his grandma yelled at Tomto go get her a new pair. (ConceptNet)
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Tom’s grandma was reading a new book, when she dropped her glasses.

Qpablea
She couldn’t pick them up, so|she called Tom for heIp
improve
Yw:ll one’s vision

Tomjrushed to help her look for them, the heard a loud crack. usedFD

people
They realized that|Tom broke her glasses by stepping on th
QWI// Want
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Overview of existing resources

Represented in symbolic logic
(e.g., LISP-style logic)

(#$implies
(#$and
(#$isa 70BJ ?SUBSET)

(#$genls ?SUBSET ?SUPERSET))
(#$isa 70BJ ?SUPERSET))

Cyc OpenCyc | ResearchCyc | OpenCyc 4.0
(Lenat et al., 1984) (Lenat, 2004)/\ (Lenat, 2006) (Lenat, 2012)

today



Overview of existing resources
A/
/0
Open Mind Common Sense ConceptNet ConceptNet 5.5
@linsky, Singh & Havasi, 1999 Qiu & Singh, 2009 QSpeer et al., 2017)

Cyc OpenCyc | ResearchCyc | OpenCyc 4.0
(Lenat et al., 1984) (Lenat, 2004)/\ (Lenat, 2006) (Lenat, 2012)

today



Represented in natural language
(how humans talk and think)

/ﬂ reading

\_

An English term in ConceptNet 5.8

/
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Represented in natural language
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\ ﬂ a headache
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Represented in natural language
(how humans talk and think)

/

/reading IS a type of...\

B an activity
B = good way to learn
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¥ reading

An English term in ConceptNet 5.8

N B one way of learning
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Minsky, Singh & Havasi, 1999 Liu & Singh, 2004 (Speer et al., 2017)
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(Lenat et al., 1984) (Lenat, 2004)/\ (Lenat, 2006) (Lenat, 2012)

today
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Decisions when building a new resource

1. Representation Tradeoff between expressivity and ease of collection

2. Knowledge Type

3. Acquisition Method



Discussion:
Tradeoffs between collecting knowledge
from people and extracting from text




3. Acquisition Method

I+\

{ from people ]

4 from text

X Expensive, takes a long time




3. Acquisition Method

{ W from people ] | & from text

X Expensive, takes a long time

Reporting bias and knowledge acquisition. Jonathan Gordon and Benjamin Van Durme. AKBC 2013.



3. Acquisition Method

{ W from people ] & from text

X Reporting bias
X Expensive, takes a long time

Reporting bias and knowledge acquisition. Jonathan Gordon and Benjamin Van Durme. AKBC 2013.



3. Acquisition Method

{ W from people ] from text

X Reporting bias
X Expensive, takes a long time

murdered + killed

breathed + exhaled + inhaled

M

Reporting bias and knowledge acquisition. Jonathan Gordon and Benjamin Van Durme. AKBC 2013.



3. Acquisition Method

{ W from people ] & from text

X Reporting bias
X Expensive, takes a long time

X What is NOT true

Reporting bias and knowledge acquisition. Jonathan Gordon and Benjamin Van Durme. AKBC 2013.
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A Primer in BERTology: What we know about how BERT works. Anna Rogers, Olga Kovaleva, and Anna Rumshisky. TACL 2020.
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Syntax:
- Encode information about parts of speech, syntactic chunks and roles
- Syntax trees can be recovered from the representation
- Subject-verb agreement (e.g. tense, plurality)

A Primer in BERTology: What we know about how BERT works. Anna Rogers, Olga Kovaleva, and Anna Rumshisky. TACL 2020.
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Syntax:
- Encode information about parts of speech, syntactic chunks and roles
- Syntax trees can be recovered from the representation
- Subject-verb agreement (e.g. tense, plurality)

Semantics:
« Semantic roles
- Entity types

A Primer in BERTology: What we know about how BERT works. Anna Rogers, Olga Kovaleva, and Anna Rumshisky. TACL 2020.
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v/ Knowledge in Pre-trained LMs
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At M WIKIPEDIA
The Free Encyclopedia

Syntax:
- Encode information about parts of speech, syntactic chunks and roles
- Syntax trees can be recovered from the representation
- Subject-verb agreement (e.g. tense, plurality)

Semantics: . o
. Semantic roles Domain-specific facts Most people don't know

- Entity types
S The native language of Mammootty is [MASK].

Factual knowledge

A Primer in BERTology: What we know about how BERT works. Anna Rogers, Olga Kovaleva, and Anna Rumshisky. TACL 2020.



X Knowledge in Pre-trained LMs

How can we know what language models know? Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. TACL 2020
Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly. Nora Kassner and Hinrich Schitze. ACL 2020

What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models. Allyson Ettinger. TACL 2020


https://emojipedia.org/cross-mark/

X Knowledge in Pre-trained LMs

DirectX is developed by [ MASK].
Intel -1.06\

Microsoft -2.21

X Confuse semantically-similar mutually-exclusive terms

IBM -2.76
Google -3.40
Nokia -3.58
(Jiang et al., 2020)

How can we know what language models know? Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. TACL 2020
Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly. Nora Kassner and Hinrich Schitze. ACL 2020

What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models. Allyson Ettinger. TACL 2020


https://emojipedia.org/cross-mark/

X Knowledge in Pre-trained LMs

Birds [MASK] fly.

X Confuse semantically-similar mutually-exclusive terms Can / can't

X Are really bad with negation ,
(Kassner et al. 2020; Ettinger, 2020)

How can we know what language models know? Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. TACL 2020
Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly. Nora Kassner and Hinrich Schitze. ACL 2020

What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models. Allyson Ettinger. TACL 2020


https://emojipedia.org/cross-mark/

X Knowledge in Pre-trained LMs

X Confuse semantically-similar mutually-exclusive terms

X Are really bad with negation

X Lack perceptual knowledge (people don’t talk about it)

How can we know what language models know? Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. TACL 2020
Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly. Nora Kassner and Hinrich Schitze. ACL 2020

What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models. Allyson Ettinger. TACL 2020
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X Knowledge in Pre-trained LMs

X Confuse semantically-similar mutually-exclusive terms

X Are really bad with negation Wiapepia

e Encyclopedia

X Lack perceptual knowledge (people don’t talk about it)

X Also suffer from reporting bias!

How can we know what language models know? Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. TACL 2020
Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly. Nora Kassner and Hinrich Schitze. ACL 2020

What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models. Allyson Ettinger. TACL 2020


https://emojipedia.org/cross-mark/
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Winograd Schema Challenge (WSC)

The city councilmen refused the demonstrators a permit
because they advocated violence. Who is “they”?

(a) The city councilmen
(b)The demonstrators

The city councilmen refused the demonstrators a permit
because they feared violence. Who is “they”?

(a) The city councilmen
(b)The demonstrators

The winograd schema challenge. Hector Levesque, Ernest Davis, and Leora Morgenstern. AAAI 2012.



Supervised Approach

[CLS] The city councilmen refused the demonstrators a permit
because [SEP] advocated violence.

0.6/

[CLS] The city councilmen refused the demonstrators a permit / @ 0.33
because [SEP] advocated violence.

A Surprisingly Robust Trick for the Winograd Schema Challenge. Vid Kocijan, Ana-Maria Cretu, Oana-Maria Camburu, Yordan Yordanov, and Thomas Lukasiewic. ACL 2019.



Unsupervised Approach

argmax; P;,,(s;, $,)

51+ The city councilmen refused the demonstrators a permit because the city councilmen advocated violence.

s»: The city councilmen refused the demonstrators a permit because the demonstrators advocated violence.

A Simple Method for Commonsense Reasoning. Trieu H. Trinh and Quoc V. Le. arXiv 2019.



Unsupervised Approach

argmax; P;,,(s;, $,)

s1: The city councilmen refused the demonstrators a permit because the city councilmen advocated violence.

s»: The city councilmen refused the demonstrators a permit because the demonstrators advocated violence.

argmax Z PLM]- (815 5,)
J

A Simple Method for Commonsense Reasoning. Trieu H. Trinh and Quoc V. Le. arXiv 2019.



Katrina had the financial means to afford a new car while

Monica did not, since had a high paying job.
Q

WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale. Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. AAAI 2020.



Sentence:

Katrina had the financial means to afford a new car while Monica did not, since
[MASK] had a high paying job.

https:/demo.allennlp.org/masked-Im

Predictions:
11.8% !

8.8% She

6.3% |

6.2% So

5.2% Monica
« Undo


https://demo.allennlp.org/masked-lm
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Neurosymbolic Approach
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new car while Monica did not, since had a

high paying job.




Incorporating External Knowledge into Neural Models

Recipe



Incorporating External Knowledge into Neural Models

Recipe

©
Knowledge Source )

Knowledge bases,
extracted from text, hand-
crafted rules



Incorporating External Knowledge into Neural Models

Recipe

©
Knowledge Source )

Knowledge bases,
extracted from text, hand-
crafted rules

Neural Component

Pre/post pre-trained

language models



Incorporating External Knowledge into Neural Models

Recipe

©
Knowledge Source )

Knowledge bases,
extracted from text, hand-
crafted rules

Neural Component

Pre/post pre-trained

language models

SILT'D Combination Method
U

Attention, pruning, word

C] » embeddings, multi-task

learning




Incorporating External Knowledge into Neural Models

Recipe

©
Knowledge Source )

Knowledge bases,
extracted from text, hand-
crafted rules



mnln‘g from cnrnnra

. Hand-crafted rules ),
Snoclallzad omnoddlngs

== Sentiment analyzer

il ’ comn

e .o - -



Incorporating External Knowledge into Neural Models

Recipe

Neural Component
Pre/post pre-trained
language models



Incorporating External Knowledge into Neural Models

Recipe

U 'D Combination Method

Attention, pruning, word

D embeddings, multi-task

T

learning



Combination Method

* Incorporate into scoring function
3K Multi-task learning

K Symbolic — vector representation (+attention)

:

°

oL
:

n,U




Combination Method

* Incorporate into scoring function
3K Multi-task learning

K Symbolic — vector representation (+attention)

:

°

oL
:

n’U




Incorporating External Knowledge into Neural Models

Multitask Learning

Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning. Jiangnan Xia, Chen Wu, and Ming Yan. CIKM 2019.



Incorporating External Knowledge into Neural Models

Multitask Learning

- | [CLS] Story: sq...s, ... [SEP]Ending l:e;;...€;; N 0.51

0.49

[CLS] StOPy: Sl « o Sn [SBP] Endlng : 621 « .. 621 '

Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning. Jiangnan Xia, Chen Wu, and Ming Yan. CIKM 2019.



Incorporating External Knowledge into Neural Models

Multitask Learning

Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning. Jiangnan Xia, Chen Wu, and Ming Yan. CIKM 2019.



Incorporating External Knowledge into Neural Models

Multitask Learning

ConceptNet

O

/ \of

Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning. Jiangnan Xia, Chen Wu, and Ming Yan. CIKM 2019.



Incorporating External Knowledge into Neural Models

Multitask Learning

Auxiliary Task ;= restaurant L= food

© ConceptNet
|-+ 1. Are they related?

O |
f \ f o Aux Classifier 1

/! N

[ restaurant J[ food J

Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning. Jiangnan Xia, Chen Wu, and Ming Yan. CIKM 2019.



Incorporating External Knowledge into Neural Models

Multitask Learning

Auxiliary Task ;= restaurant L= food

o ConceptNet

),

O - | |
\ f s Aux Classifier 1 Aux Classifier 2
f O 7 N 4 N

SCIve : [ restaurant J [ food J [ restaurant ] [ fOOd ]

Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning. Jiangnan Xia, Chen Wu, and Ming Yan. CIKM 2019.
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Limitations of Neurosymbolic Methods

» Knowledge graphs have limited coverage <~ Commonsense knowledge is 7

gl

' immeasurably vast, making it €Y
| impossible to manually enumerate



Limitations of Neurosymbolic Methods

B mouse

An English term in ConceptNet 5.8

} l<n OWledge graphs h ave limited C()verage \S\‘/)our';icrj:t Open Mind Common Sense contributors, DBPedia 201!

View this term in the API

» Inferences may be correct only in certain contexts

Location of mouse

B a hole in a wall
B) the garage

a a laboratory
B the attic

B a cupboard
B a kitchen




Limitations of Neurosymbolic Methods

» Knowledge graphs have limited coverage

» Inferences may be correct only in certain contexts

location capable of

» Long KB paths have limited precision  Kitchen———— Knife

Kl




Limitations of Neurosymbolic Methods

» Knowledge graphs have limited coverage

» Inferences may be correct only in certain contexts

» Long KB paths have limited precision

» Tradeoff: embedding knowledge (better generalization)
vs. hard constraints (more accurate)



Limitations of Neurosymbolic Methods

» Knowledge graphs have limited coverage

» Inferences may be correct only in certain contexts



COMET

Given a seed entity and a relation,
learn to generate the target entity tail entity

(- .
| anguage Model
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person sails across oceans <requires>

head entity relation
COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli

Celikyilmaz, and Yejin Choi. ACL 2020
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COMET

Given a seed entity and a relation,
learn to generate the target entity tail entity

(- .
| anguage Model
&

\_

T T T T T

person sails across oceans <requires>

head entity relation
COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli

Celikyilmaz, and Yejin Choi. ACL 2020



COMET

, . ) L = - Z log P(target words | seed words, relation)
Given a seed entity and a relation,

learn to generate the target entity tail entity
buy a boat

1]
(- Y

| anguage Model

< T T T T T >

person sails across oceans <requires>

head entity relation
COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli

Celikyilmaz, and Yejin Choi. ACL 2020



COMET

Language Model — Knowledge Model:
generates knowledge of the structure

tail entity

of the examples used for training

rrrrr

eeeee

'Y '
X's heart as an
A Calls Tor jusuce ) G enlist B (Pl races

X needs to X feels < aai errect on
train hard tired RIS el

X wanted to X needs to know . 7 T T AN enemy,

X is skilled
protect others self-defense
X is brave Y
| ‘ ‘ ‘ T f — Xisctrann /

person sails across oceans <requires>

head entity relation
COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli

Celikyilmaz, and Yejin Choi. ACL 2020



X needs to

X wants to file a
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