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Is Natural Language Understanding Nearly Solved?

Language Model

The amazingiscakechocolate

+-
94.6%5.4%

Pre-training Fine-tuning:

✅ Syntax 
✅ Word meanings 
✅ Factual Knowledge 
✅ …

✅ Understanding the task 
✅ Learning to solve the task

❓Generalization to unknown situations

What are the remaining challenges?
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🤖: 2 

Overfitting to Data-specific Spurious Correlations

How many dogs? 2

How many 
zebras? 2

How many giraffes? 2

Analyzing the Behavior of Visual Question Answering Models. Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. EMNLP 2016.



How many zebras?

🤖: 2 

Overfitting to Data-specific Spurious Correlations

How many dogs? 2

How many 
zebras? 2

How many giraffes? 2

…Solving datasets but not underlying tasks!

Analyzing the Behavior of Visual Question Answering Models. Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. EMNLP 2016.
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Ambiguous

Commonsense Reasoning  

Stevie Wonder  
announces he’ll be  
having kidney  
surgery during  
London concert

Q: When is the surgery? 
A: During London concert ❌ 

🤔 Kidney surgery is performed under general anesthesia 
🤔 People are unconscious under general anesthesia 
🤔 Performing actions requires being conscious 

Under-Specified

Natural language is…

🤔 Yogurt is typically made of cow milk 
🤔 Cows eat grass 

= yogurt with grass❌
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Commonsense Timeline

1956

1974

1980

2011

Big 
Data

Deep 
Learning



Path to commonsense?

Brute force larger networks with deeper layers? 



Path to commonsense?

Brute force larger networks with deeper layers? 



Path to commonsense?

Brute force larger networks with deeper layers? 

You don’t reach the moon  
by making the tallest building in the world taller 
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1950: Turing Test

Alan Turing

Can machines think? 

Can a human judge distinguish between a human and 
a machine following a short conversation with each?

• Loebner Prize (since 1990s) 
• Winner of 2014: a bot named “Eugene Goostman”, simulating a 13-year-old Ukrainian boy, won 
• Recommended reading: https://artistdetective.wordpress.com/, “The most human human”

https://artistdetective.wordpress.com/
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Reasoning about Social Situations

Alex spilt food all over the floor and 
it made a huge mess.

What will Alex want to do next?

run around in the mess  mop up the mess

less likely more likely
https://leaderboard.allenai.org/socialiqa

https://leaderboard.allenai.org/socialiqa


Reasoning about Physical Properties of the World

To separate egg whites from the yolk 
using a water bottle, you should 

Squeeze the water bottle and press 
it against the yolk. Release, which 
creates suction and lifts the yolk.

less likely more likely
https://leaderboard.allenai.org/physicaliqa/

Place the water bottle and press it 
against the yolk. Keep pushing, which 
creates suction and lifts the yolk.

https://leaderboard.allenai.org/physicaliqa/


COPA: Choice of Plausible Alternatives 

The man broke his toe. 

He got a hole in his sock.

less likely more likely

He dropped a hammer on his foot.

What was the cause?



RocStories

https://www.cs.rochester.edu/nlp/rocstories/

Karen was assigned a roommate her first year of 
college. Her roommate asked her to go to a 
nearby city for a concert. Karen agreed happily. 
The show was absolutely exhilarating. 

Karen hated her roommate.

less likely more likely

Karen became good friends with her roommate.

https://www.cs.rochester.edu/nlp/rocstories/


Discussion:  
Advantages and Disadvantages  
of Multiple-Choice Benchmarks
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Reliable Evaluation

…
Generative tasks:   

More nuanced & flexible than pre-defined labels

More similar to human reasoning process  
(no “answer choices”)

Infinite answer space  
(no “guessing” of correct answer)

No reliable automatic evaluation metric

Discriminative 
tasks:  

A B

C

Easy to evaluate

Models are right for the wrong 
reasons

25



CommonGen

https://inklab.usc.edu/CommonGen/
CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning.  
Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang Ren. Findings of EMNLP 2020.


https://inklab.usc.edu/CommonGen/
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Grandma’s glasses
Tom’s grandma was reading a new book, when she dropped her glasses.

She couldn’t pick them up, so she called Tom for help.

Tom rushed to help her look for them, they heard a loud crack.

They realized that Tom broke her glasses by stepping on them.

Promptly, his grandma yelled at Tom to go get her a new pair.
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Humans reason about the world with 
mental models [Graesser, 1994]

Personal 
experiences

World knowledge 
and commonsense

Commonsense resources 
aim to be a bank of 

knowledge for machines to 
be able to reason about the 

world in tasks
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usedFor

Y will want

Y will

capableOf

improve 
one’s vision

people

relaxing
subeventOf

activity
typeOf

usedFor

X feels

nervous

corrective lens

typeOf

X wanted to
express anger

ConceptNet

ATOMIC

Tom’s grandma was reading a new book, when she dropped her glasses.

She couldn’t pick them up, so she called Tom for help.

Tom rushed to help her look for them, they heard a loud crack.

They realized that Tom broke her glasses by stepping on them.

Promptly, his grandma yelled at Tom to go get her a new pair.



Overview of existing resources

OpenCyc 
(Lenat, 2004)

Cyc 
(Lenat et al., 1984)

OpenCyc 4.0 
(Lenat, 2012)

ResearchCyc 
(Lenat, 2006)

today

Represented in symbolic logic 
(e.g., LISP-style logic)

(#$implies  
  (#$and  
    (#$isa ?OBJ ?SUBSET) 
    (#$genls ?SUBSET ?SUPERSET)) 
  (#$isa ?OBJ ?SUPERSET)) 
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(Liu & Singh, 2004)
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(Minsky, Singh & Havasi, 1999)

Cyc 
(Lenat et al., 1984)

OpenCyc 4.0 
(Lenat, 2012)

ResearchCyc 
(Lenat, 2006)

today

ConceptNet 5.5 
(Speer et al., 2017)
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(Liu & Singh, 2004)
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(Tandon et al., 2014)
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Overview of existing resources
ATOMIC 

(Sap et al., 2019)

OpenCyc 
(Lenat, 2004)

ConceptNet 5.5 
(Speer et al., 2017)

Web Child 2.0 
(Tandon et al., 2017)

ConceptNet 
(Liu & Singh, 2004)

Web Child 
(Tandon et al., 2014)

Open Mind Common Sense 
(Minsky, Singh & Havasi, 1999)

Cyc 
(Lenat et al., 1984)

OpenCyc 4.0 
(Lenat, 2012)

ResearchCyc 
(Lenat, 2006)

NELL 
(Mitchell et al., 2015)

NELL 
(Carlson et al., 2010)

today



ATOMIC: 880,000 triples for AI systems to reason 
about causes and effects of everyday situations

      X repels 
      Y’s 
attack

Represented in natural language 
(how humans talk and think)



      X repels 
      Y’s attack



Causes

      X repels 
      Y’s attack



Effects

      X repels 
      Y’s attack
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Decisions when building a new resource

2. Knowledge Type

3. Acquisition Method

1. Representation Tradeoff between expressivity and ease of collection 



Discussion:  
Tradeoffs between collecting knowledge 

from people and extracting from text
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3. Acquisition Method

2⃣ from text1⃣ from people

Reporting bias
Expensive, takes a long time

Reporting bias and knowledge acquisition. Jonathan Gordon and Benjamin Van Durme. AKBC 2013.

murdered + killed

breathed + exhaled + inhaled



3. Acquisition Method

2⃣ from text1⃣ from people

Reporting bias
Expensive, takes a long time

Reporting bias and knowledge acquisition. Jonathan Gordon and Benjamin Van Durme. AKBC 2013.

What is NOT true
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Knowledge in Pre-trained LMs

A Primer in BERTology: What we know about how BERT works. Anna Rogers, Olga Kovaleva, and Anna Rumshisky. TACL 2020.

✅ Syntax: 
• Encode information about parts of speech, syntactic chunks and roles 
• Syntax trees can be recovered from the representation 
• Subject-verb agreement (e.g. tense, plurality) 

✅ Semantics: 
• Semantic roles 
• Entity types 

✅ Factual knowledge
The native language of Mammootty is [MASK].

Malayalam ✅

Domain-specific facts Most people don’t know



❌ Knowledge in Pre-trained LMs

How can we know what language models know? Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. TACL 2020


Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly. Nora Kassner and Hinrich Schütze. ACL 2020

What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models. Allyson Ettinger. TACL 2020

https://emojipedia.org/cross-mark/
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DirectX is developed by [MASK].

(Jiang et al., 2020)

How can we know what language models know? Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. TACL 2020


Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly. Nora Kassner and Hinrich Schütze. ACL 2020

What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models. Allyson Ettinger. TACL 2020

https://emojipedia.org/cross-mark/
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Birds [MASK] fly.

Can / can’t

(Kassner et al. 2020; Ettinger, 2020)

How can we know what language models know? Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. TACL 2020


Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly. Nora Kassner and Hinrich Schütze. ACL 2020

What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models. Allyson Ettinger. TACL 2020
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❌ Knowledge in Pre-trained LMs
❌ Confuse semantically-similar mutually-exclusive terms 

❌ Are really bad with negation

❌ Lack perceptual knowledge (people don’t talk about it)

❌ Also suffer from reporting bias!

Everyone is dead

How can we know what language models know? Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. TACL 2020


Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly. Nora Kassner and Hinrich Schütze. ACL 2020

What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models. Allyson Ettinger. TACL 2020

https://emojipedia.org/cross-mark/
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Winograd Schema Challenge (WSC)

The city councilmen refused the demonstrators a permit 
because they advocated violence. Who is “they”? 

(a)The city councilmen 
(b)The demonstrators 

The city councilmen refused the demonstrators a permit 
because they feared violence. Who is “they”? 

(a)The city councilmen 
(b)The demonstrators

The winograd schema challenge. Hector Levesque, Ernest Davis, and Leora Morgenstern. AAAI 2012.



Supervised Approach

[CLS] The city councilmen refused the demonstrators a permit 
because [SEP] the city councilmen advocated violence.

[CLS] The city councilmen refused the demonstrators a permit 
because [SEP] the demonstrators advocated violence.

0.67

0.33

A Surprisingly Robust Trick for the Winograd Schema Challenge. Vid Kocijan, Ana-Maria Cretu, Oana-Maria Camburu, Yordan Yordanov, and Thomas Lukasiewic. ACL 2019.



A Simple Method for Commonsense Reasoning. Trieu H. Trinh and Quoc V. Le. arXiv 2019.
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A Simple Method for Commonsense Reasoning. Trieu H. Trinh and Quoc V. Le. arXiv 2019.

argmaxi PLM(s1, s2)
: The city councilmen refused the demonstrators a permit because the city councilmen advocated violence.s1

: The city councilmen refused the demonstrators a permit because the demonstrators advocated violence.s2

argmaxi ∑
j

PLMj
(s1, s2)

Unsupervised Approach



Katrina had the financial means to afford a new car while 
Monica did not, since            had a high paying job.

WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale. Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. AAAI 2020. 



https://demo.allennlp.org/masked-lm 

https://demo.allennlp.org/masked-lm
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Neurosymbolic Approach 

Katrina had the financial means to afford a 
new car while Monica did not, since ____ had a 
high paying job.

0.430.57

vector representation

Model
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Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning. Jiangnan Xia, Chen Wu, and Ming Yan. CIKM 2019. 
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Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning. Jiangnan Xia, Chen Wu, and Ming Yan. CIKM 2019. 

[CLS] Story:  ...  [SEP] Ending 1: s1 . . . sn e11 . . . e1k 0.51

0.49[CLS] Story:  ...  [SEP] Ending 2: s1 . . . sn e21 . . . e2l
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Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning. Jiangnan Xia, Chen Wu, and Ming Yan. CIKM 2019. 

ConceptNet
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Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning. Jiangnan Xia, Chen Wu, and Ming Yan. CIKM 2019. 

Auxiliary Task  = restaurantSi  = foodEj

restaurant food

Aux Classifier 1

ConceptNet

1. Are they related?

yes
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Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning. Jiangnan Xia, Chen Wu, and Ming Yan. CIKM 2019. 

Auxiliary Task  = restaurantSi  = foodEj

restaurant food

Aux Classifier 1

ConceptNet

1. Are they related?

yes

2. What’s the relation?

restaurant food

Aux Classifier 2

serve

Incorporating External Knowledge into Neural Models 

Multitask Learning 
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Limitations of Neurosymbolic Methods
‣ Knowledge graphs have limited coverage Commonsense knowledge is 

immeasurably vast, making it 
impossible to manually enumerate



Limitations of Neurosymbolic Methods
‣ Knowledge graphs have limited coverage
‣ Inferences may be correct only in certain contexts



Limitations of Neurosymbolic Methods
‣ Knowledge graphs have limited coverage
‣ Inferences may be correct only in certain contexts

‣ Long KB paths have limited precision KnifeKitchen Killlocation capable of 



Limitations of Neurosymbolic Methods
‣ Knowledge graphs have limited coverage
‣ Inferences may be correct only in certain contexts

‣ Long KB paths have limited precision

‣ Tradeoff: embedding knowledge (better generalization)  
vs. hard constraints (more accurate)



Limitations of Neurosymbolic Methods
‣ Knowledge graphs have limited coverage
‣ Inferences may be correct only in certain contexts

‣ Long KB paths have limited precision

‣ Tradeoff: embedding knowledge (better generalization)  
vs. hard constraints (more accurate)



person sails across oceans

head entity

<requires>

relation

tail entity
Given a seed entity and a relation,  
learn to generate the target entity

COMET

Language Model

COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli 
Celikyilmaz, and Yejin Choi. ACL 2020
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Celikyilmaz, and Yejin Choi. ACL 2020




person sails across oceans

head entity

<requires>

relation

buy a

tail entity
Given a seed entity and a relation,  
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COMET

Language Model

COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli 
Celikyilmaz, and Yejin Choi. ACL 2020




person sails across oceans

head entity

<requires>

relation

boatbuy a

tail entity
Given a seed entity and a relation,  
learn to generate the target entity

COMET

Language Model

COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli 
Celikyilmaz, and Yejin Choi. ACL 2020




person sails across oceans

head entity

<requires>

relation

boatbuy a

tail entity
Given a seed entity and a relation,  
learn to generate the target entity

COMET
ℒ = − ∑ log P(target words |seed words, relation)

Language Model

COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli 
Celikyilmaz, and Yejin Choi. ACL 2020




person sails across oceans

boatbuy a

Language Model       Knowledge Model: 
generates knowledge of the structure  
of the examples used for training

Knowledge Model

<requires>

COMET

tail entity

head entity relation
COMET: Commonsense Transformers for Automatic Knowledge Graph Construction. Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli 
Celikyilmaz, and Yejin Choi. ACL 2020
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Generate commonsense  
knowledge for any input concept

      COMmonsEnse Transformers
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PersonX gives  
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COMET - ATOMIC

X perceived as
smart

Before, X needed
to be a teacher

Others then none

Others will want to thank PersonX

gain knowledge



listen to  
tutorial

COMET - ConceptNet



listen to  
tutorial

COMET - ConceptNet

location classroom



listen to  
tutorial

COMET - ConceptNet

location classroom

motivated by
you be smart



listen to  
tutorial

COMET - ConceptNet

location classroom

motivated by
you be smart

starts with
sit down



listen to  
tutorial

COMET - ConceptNet

location classroom

motivated by
you be smart

has prerequisite listen carefully

starts with
sit down



listen to  
tutorial

COMET - ConceptNet

location classroom

motivated by
you be smart

causes
good grade

has prerequisite listen carefully

starts with
sit down
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vshwartz@cs.ubc.ca@VeredShwartz

Thank You!
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