
Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

From Self-Attention to Transformers

Lecture 10: Transformers

3

ANNOUNCEMENTS
• HW1 is graded (few remaining). Solutions are posted on Canvas -> Files

• HW2 is due tonight @ 11:59pm!

• HW3 will be released tonight @ 11:59pm! The shortest assignment yet.

• Candidate Research Projects have been announced.

• Read them on `Research Brainstorming` spreadsheet.

• Indicate your preferences on the Google Form (see Ed post) by Wed 11:59pm

• Tonight @ 8pm, Zoom will be open for anyone who wishes to discuss projects

4

RESEARCH PROJECTS
• Phase II is due Oct 14 @ 11:59pm. See website for full expectations.

• Abstract + Related Works + Introduction (this will improve over time).

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Outline

5

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Outline

6

Self-Attention

The brown dog ran
x1 x2 x3 x4

Under the hood, each xi has 3
small, associated vectors. For
example, x1 has:
• Query q1

• Key k1

• Value v1

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 1: Our Self-Attention Head l has just 3 weight
matrices Wq, Wk, Wv in total. These same 3 weight
matrices are multiplied by each xi to create all vectors:

qi = wq xi
ki = wk xi
vi = wv xi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘!) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .08
a2 = 𝝈(𝒔𝟐/𝟖)= .91

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0

s1 = q2⋅k1 = 92

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘!) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .08
a2 = 𝝈(𝒔𝟐/𝟖)= .91

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0 Instead of these ai values directly
weighting our original xi word vectors,
they directly weight our vi vectors.

s1 = q2⋅k1 = 92

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z2 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 4: Let’s weight our vi vectors and simply sum them up!

= 0.08⋅v1 + 0.91⋅v2 + 0.01⋅v3 + 0⋅v4

z2

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Tada! Now we have great, new representations zi via a self-attention head

z4z3z2z1

Self-attention Head

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Tada! Now we have great, new representations zi via a self-attention head
z4z3z2z1

Takeaway:

Self-Attention is powerful; allows us to
create great, context-aware
representations

Self-Attention may seem strikingly
like Attention in seq2seq models

Q: What are the key, query, value vectors in the Attention setup?

Attention

∗ ℎ!"ℎ!# a1 = 𝝈(𝒔𝟏)

a2 = 𝝈(𝒔𝟐)

a3 = 𝝈(𝒔𝟑)

a4 = 𝝈(𝒔𝟒)

s1 =

s2 =

s3 =

s4 =

∗ ℎ$"ℎ!#
∗ ℎ%"ℎ!#
∗ ℎ&"ℎ!#

The brown dog ran

ENCODER RNN

ℎ!" ℎ$" ℎ%" ℎ&" ℎ!#

<s>

DECODER RNN

Attention

∗ ℎ!"ℎ!# a1 = 𝝈(𝒔𝟏)

a2 = 𝝈(𝒔𝟐)

a3 = 𝝈(𝒔𝟑)

a4 = 𝝈(𝒔𝟒)

s1 =

s2 =

s3 =

s4 =

∗ ℎ$"ℎ!#
∗ ℎ%"ℎ!#
∗ ℎ&"ℎ!#

We multiply each encoder’s hidden

layer by its 𝑎!& attention weights to
create a context vector 𝑐&'

The brown dog ran

ENCODER RNN

ℎ!" ℎ$" ℎ%" ℎ&" ℎ!#

<s>

DECODER RNN

Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ$" ℎ%" ℎ&" ℎ!#

∗ ℎ!"ℎ!#

<s>

DECODER RNN

a1 = 𝝈(𝒔𝟏)

a2 = 𝝈(𝒔𝟐)

a3 = 𝝈(𝒔𝟑)

a4 = 𝝈(𝒔𝟒)

s1 =

s2 =

s3 =

s4 =

∗ ℎ$"ℎ!#
∗ ℎ%"ℎ!#
∗ ℎ&"ℎ!#

We multiply each encoder’s hidden

layer by its 𝑎!& attention weights to
create a context vector 𝑐&'

𝒄𝟏𝑫 = a1⋅h1
E + a2⋅ h2

E + a3⋅ h3
E + a4⋅ h4

E

Self-Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ$" ℎ%" ℎ&"We multiply each word’s value

vector by its 𝑎!& attention weights to
create a better vector z1

z1 = a1⋅v1
E + a2⋅ v2

E + a3⋅ v3
E + a4⋅ v4

E

q1 k1 v1

a1 = 𝝈(𝒔𝟏/𝟖)

a2 = 𝝈(𝒔𝟐/𝟖)

a3 = 𝝈(𝒔𝟑/𝟖)

a4 = 𝝈(𝒔𝟒/𝟖)

s1 = q2⋅k1

s2 = q2⋅k2

s3 = q2⋅k3

s4 = q2⋅k4

Self-Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ$" ℎ%" ℎ&"We multiply each word’s value

vector by its 𝑎!& attention weights to
create a better vector z1

z1 = a1⋅v1
E + a2⋅ v2

E + a3⋅ v3
E + a4⋅ v4

E

q1 k1 v1

a1 = 𝝈(𝒔𝟏/𝟖)

a2 = 𝝈(𝒔𝟐/𝟖)

a3 = 𝝈(𝒔𝟑/𝟖)

a4 = 𝝈(𝒔𝟒/𝟖)

s1 = q2⋅k1

s2 = q2⋅k2

s3 = q2⋅k3

s4 = q2⋅k4

Attention
Self-

Attention

qi ℎ/0

ki ℎ/1

Description

the probe

item being
compared

vi ℎ/1
item being
weighted

Self-Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ$" ℎ%" ℎ&"We multiply each word’s value

vector by its 𝑎!& attention weights to
create a better vector z1

z1 = a1⋅v1
E + a2⋅ v2

E + a3⋅ v3
E + a4⋅ v4

E

q1 k1 v1

a1 = 𝝈(𝒔𝟏/𝟖)

a2 = 𝝈(𝒔𝟐/𝟖)

a3 = 𝝈(𝒔𝟑/𝟖)

a4 = 𝝈(𝒔𝟒/𝟖)

s1 = q2⋅k1

s2 = q2⋅k2

s3 = q2⋅k3

s4 = q2⋅k4

Attention
Self-

Attention

ℎ/0

ℎ/1

Description

the probe

item being
compared

ℎ/1
item being
weighted

All of these are like
surrogates/proxies/abstractions.

This provides flexibility and fewer
constraints.

More room for rich abstractions.

qi

ki

vi

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Outline

24

Outline

25

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Self-Attention

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Let’s further pass each zi through a
FFNN

Self-Attention + FFNN

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1 Let’s further pass each zi through a
FFNN

Self-Attention + FFNN

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1

Let’s further pass each zi through a
FFNN

We concat w/ a residual connection
to help ensure relevant info is
getting forward passed.

We perform LayerNorm to stabilize
the network and allow for proper
gradient flow. You should do this
after the FFNN, too.

+ x Residual Connections +LayerNorm

Self-Attention + FFNN

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1

Let’s further pass each zi through a
FFNN

We concat w/ a residual connection
to help ensure relevant info is
getting forward passed.

We perform LayerNorm to stabilize
the network and allow for proper
gradient flow. You should do this
after the FFNN, too.

Each zi can be computed in parallel,
unlike LSTMs!

+ x Residual Connections +LayerNorm

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new
representations, and this
entire process is called a
Transformer Encoder

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new
representations, and this
entire process is called a
Transformer Encoder

Problem: there is no concept
of positionality. Words are
weighted as if a “bag of
words”

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new
representations, and this
entire process is called a
Transformer Encoder

Problem: there is no concept
of positionality. Words are
weighted as if a “bag of
words”

Solution: add to each input
word xi a positional encoding
~ sin 𝑖 cos(𝑖)

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

Position Encodings

https://jalammar.github.io/illustrated-transformer/

Words can relate in many ways, so it’s restrictive to
rely on just one Self-Attention Head in the system.

Let’s create Multi-headed Self-Attention

A Self-Attention Head has just one set of
query/key/value weight matrices wq, wk, wv

The brown dog ran
x1 x2 x3 x4

Self-attention Head

Each Self-Attention Head

produces a zi vector.

We can, in parallel, use

multiple heads and

concat the zi‘s.

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C z4A z4B z4C

The brown dog ran
x1 x2 x3 x4

Self-attention Head

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C z4A z4B z4C

To recap: all of this looks
fancy, but ultimately it’s
just producing a very
good contextualized
embedding riof each
word xi

The brown dog ran
x1 x2 x3 x4

Self-attention Head

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C z4A z4B z4C
=

The brown dog ran
x1 x2 x3 x4

Transformer Encoder

Encoder #1

r2 r3 r4r1

To recap: all of this looks
fancy, but ultimately it’s
just producing a very
good contextualized
embedding riof each
word xi

The brown dog ran
x1 x2 x3 x4

To recap: all of this looks
fancy, but ultimately it’s
just producing a very
good contextualized
embedding riof each
word xi

Why stop with just 1
Transformer Encoder?
We could stack several!

Transformer Encoder

Encoder #1

r2 r3 r4r1

The brown dog ran
x1 x2 x3 x4

To recap: all of this looks
fancy, but ultimately it’s
just producing a very
good contextualized
embedding riof each
word xi

Why stop with just 1
Transformer Encoder?
We could stack several!

Transformer Encoder

r2

Encoder #1

Encoder #2

Encoder #3

r3 r4r1

The brown dog ran
x1 x2 x3 x4

Transformer Encoder

r2

Encoder #1

Encoder #2

Encoder #3

r3 r4r1

=

The original Transformer model was intended for
Machine Translation, so it had Decoders, too

Outline

43

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Outline

44

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

<s> El perro marrón
x1 x2 x3 x4

Masked Self-attention Head

Decoder

Transformer Decoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C z4A z4B z4C

=

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Transformer Encoders
produce contextualized
embeddings of each word

Encoder #1

Encoder #2

Encoder #8

Transformer Decoders
generate new sequences
of text

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 Transformer Decoders are
identical to the Encoders,
except they have an
additional Attention Head
in between the Self-
Attention and FFNN
layers.

This additional Attention
Head focuses on parts of
the encoder’s
representations.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The query vector for a
Transformer Decoder’s
Attention Head (not Self-
Attention Head) is from
the output of the previous
decoder layer.

However, the key and
value vectors are from the
Transformer Encoders’
outputs.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The query, key, and value
vectors for a Transformer
Decoder’s Self-Attention
Head (not Attention
Head) are all from the
output of the previous
decoder layer.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The Transformer
Decoders have positional
embeddings, too, just like
the Encoders.

Critically, each position is
only allowed to attend to
the previous indices. This
masked Attention
preserves it as being an
auto-regressive LM.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer IMPORTANT

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Attention is All you Need (2017) https://arxiv.org/pdf/1706.03762.pdf

Loss Function: cross-entropy (predicting translated word)

Training Time: ~4 days on (8) GPUs

n = sequence length

d = length of representation (vector)

Q: Is the complexity of self-attention good?

Important: when learning dependencies b/w words, you don’t want
long paths. Shorter is better.

Self-attention connects all positions with a constant # of sequentially
executed operations, whereas RNNs require 𝑂(𝑛).

https://arxiv.org/pdf/1706.03762.pdf

Machine Translation results: state-of-the-art (at the time)

:

Machine Translation results: state-of-the-art (at the time)

You can train to translate from Language A to Language B.

Then train it to translate from Language B. to Language C.

Then, without training, it can translate from Language A to

Language C

• What if we don’t want to decode/translate?

• Just want to perform a particular task (e.g., classification)

• Want even more robust, flexible, rich representation!

• Want positionality to play a more explicit role, while not

being restricted to a particular form (e.g., CNNs)

Outline

61

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Outline

62

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Bidirectional Encoder Representations from Transformers

BERT

63

Bidirectional Encoder Representations from Transformers

BERT

Like Bidirectional LSTMs, let’s look in both directions

64

Bidirectional Encoder Representations from Transformers

BERT

Let’s only use Transformer Encoders, no Decoders

65

Bidirectional Encoder Representations from Transformers

BERT

It’s a language model that builds rich representations

66

<CLS> brown dog

x1 x2 x3 x4

BERT has 2 training objectives:

Encoder #1

Encoder #2

Encoder #8
1. Predict the Masked word (a la CBOW)

15% of all input words are randomly masked.

• 80% become [MASK]

• 10% become revert back

• 10% become are deliberately corrupted
as wrong words

BERT

BERT

The

brown
lazy

playful

0.92
0.05
0.03

67

<CLS> brown dog

x1 x2 x3 x4

BERT has 2 training objectives:

Encoder #1

Encoder #2

Encoder #8
2. Two sentences are fed in at a time.
Predict the if the second sentence of
input truly follows the first one or not.

BERT

BERT

The

brown
lazy

playful

0.92
0.05
0.03

68

BERT

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

Every two sentences are separated
by a <SEP> token.

50% of the time, the 2nd sentence is a
randomly selected sentence from the
corpus.

50% of the time, it truly follows the
first sentence in the corpus.

69

BERT

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

NOTE: BERT also embeds the inputs

by their WordPiece embeddings.

WordPiece is a sub-word tokenization

learns to merge and use characters

based on which pairs maximize the

likelihood of the training data if

added to the vocab.

70

BERT

Picture: https://jalammar.github.io/illustrated-bert/

One could extract the contextualized embeddings

71

BERT

Picture: https://jalammar.github.io/illustrated-bert/

Later layers have the best contextualized embeddings

72

BERT
BERT yields state-of-the-art (SOTA) results on many tasks

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf
73

BERT (a Transformer variant)

The brown dog

x1 x2 x3

Encoder #1

Encoder #8

r2 r3r1 r4

ran

x4

Typically, one uses BERT’s awesome

embeddings to fine-tune toward a

different NLP task (this is called

Sequential Transfer Learning)

yTakeaway
BERT is incredible for learning
contextualized embeddings of words
and using transfer learning for other
tasks (e.g., classification).

Can’t generate new sentences though,
due to no decoders.

74

