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ANNOUNCEMENTS

HW1 is graded (few remaining). Solutions are posted on Canvas -> Files

« HW2is due tonight @ 11:59pm!

HW3 will be released tonight @ 11:59pm! The shortest assignment yet.

Candidate Research Projects have been announced.
« Read them on ‘Research Brainstorming spreadsheet.
 Indicate your preferences on the Google Form (see Ed post) by Wed 11:59pm

« Tonight @ 8pom, Zoom will be open for anyone who wishes to discuss projects
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RESEARCH PROJECTS

* Phase ll is due Oct 14 @ 11:59pm. See website for full expectations.

« Abstract + Related Works + Introduction (this will improve over time).
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Self-Attention
Under the hood, each x, has 3

Step 1: Our Self-Attention Head | has just 3 weight small, associated vectors. For
matrices W, W,, W, in total. These same 3 weight example, x; has:

matrices are multiplied by each x;to create all vectors: o
© Luery qq

qi — Wq X; ‘ Key k1
ki = wy x  Value v;
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Self-Attention

Step 2: For word x,, let’s calculate the scores s;, s,, s, 54, which represent how
much attention to pay to each respective “word” v;
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Self-Attention

Step 2: For word x,, let’s calculate the scores s;, s,, s, 54, which represent how
much attention to pay to each respective “word” v;

3= Qok3 = 22
S, = qz‘kz =124
s1=qyky =92




Self-Attention

Step 2: For word x,, let’s calculate the scores s;, s,, s, 54, which represent how
much attention to pay to each respective “word” v;

s4=Qyks=8
3= Qok3 = 22
s, =Qqyk, =124
s1=qyky =92




Self-Attention

Step 3: Our scores sy, s,, S3, S, don't sum to 1. Let's divide by Vien(k;) and softmax it

s4= q2°k4=8 a4=0'(S4/8)=0
53 = q2’k3 = 22 a3 = 0.(53/8) = ‘01
s, =Qqyk, =124 a,=0(s,/8)=.91

§1= q2’k1 = 92 a; = 6(51/8) = .08
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Self-Attention

Step 3: Our scores sy, s,, S3, S, don't sum to 1. Let's divide by Vien(k;) and softmax it

sys=0yk,=8 a,=0(54/8)=0 Instead of these a; values directly
weighting our original x; word vectors,

= °k = 22 d; =0(S 8 = .01
3T = 0(53/8) they directly weight our v; vectors.
s, =Qqyk, =124 a,=0(s,/8)=.91

§1= q2’k1 = 92 a; = 6(51/8) = .08

=) [(00000)




Self-Attention

Step 4: Let’s weight our v; vectors and simply sum them up!

Zy=ay'Vpta'Vp+asrVz+a, vy

= 0.08:v,; +0.91'v, + 0.01'v3 + 0°v,




Self-Attention

Tada! Now we have great, new representations z; via a self-attention head

Zy Z3

.
.
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Takeaway:

Self-Attention is powerful; allows us to
create great, context-aware
representations




Self-Attention may seem strikingly
like Attention in seg2seq models

Q: What are the key, query, value vectors in the Attention setup?




Attention

¥
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S4= hll)* hlf
S3= hll)* hg
s;= hi « hE

51=h11)*h]15

Attention

We multiply each encoder’s hidden

layer by its a] attention weights to
create a context vector ¢}
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S4= hll)* hlf
S3= hll)* hg
s;= hi « hE

51=h11)*h]15

Attention

We multiply each encoder’s hidden

layer by its a] attention weights to
create a context vector ¢}

¥
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c? =a;-hE+a,s hyE+a; hyE+a, hE

brown dog
ENCODER RNN DECODER RNN




4= 'k4 = °
uT =0t/8 1 Galf-Attention
s3= Qz-k3 a;=0(s3/8)

$2= q2°k2 a,=0(s,/8)
s1 =02k a,=0(s1/8)

We multiply each word’s value

vector by its a; attention weights to
create a better vector z;

¥
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Self-
Attention

Attention Description

item being
compared

item being
weighted

belf-Attention

>
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Self-

Attention Attention Description

item being
compared

item being
weighted

t All of these are like

surrogates/proxies/abstractions.

This provides flexibility and fewer
constraints.
More room for rich abstractions.

belf-Attention
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Self-Attention

Let’s further pass each z through a
FFNN

N




Self-Attention + FFNN
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Self-Attention + FFNN

'

X2

00000

e

(eleleTeTe)

Z4

Self-atte n Head
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Let’s further pass each z through a
FFNN

We concat w/ a residual connection
to help ensure relevant info is
getting forward passed.

We perform LayerNorm to stabilize
the network and allow for proper
gradient flow. You should do this
after the FFNN, too.




Self-Attention + FFNN

Let’s further pass each z through a
FFNN

We concat w/ a residual connection
to help ensure relevant info is
getting forward passed.

0| z; 0lz, We perform LayerNorm to stabilize
o ® the network and allow for proper

gradient flow. You should do this
Self-attention Head after the FFNN, too.
T
S
O

Each z can be computed in parallel,
g unlike LSTMs!

X2




Transformer Encoder
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Yay! Our r; vectors are our new
representations, and this
entire process is called a
Transformer Encoder
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Transformer Encoder
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Yay! Our r; vectors are our new
representations, and this
entire process is called a
Transformer Encoder

Problem: there is no concept
of positionality. Words are
weighted as if a “bag of
words”




Transformer Encoder

0000) ~°

= (X

Yay! Our r; vectors are our new
representations, and this
entire process is called a
Transformer Encoder

Problem: there is no concept
of positionality. Words are
weighted as if a “bag of
words”

Solution: add to each input
word x; a positional encoding
~ sin(i) cos(i)




Position Encodings

\

0 10 20

Token Position

30 40 50 60

Embedding Dimension

https://jalammar.github.io/illustrated-transformer/




A Self-Attention Head has just one set of

query/key/value weight matrices w, w;_ w,

Words can relate in many ways, so it's restrictive to

rely on just one Self-Attention Head in the system.

Let’s create Multi-headed Self-Attention




Transformer Encoder
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Each Self-Attention Head

produces a z; vector.
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Transformer Encoder
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To recap: all of this looks
fancy, but ultimately it's
just producing a very
good contextualized

0000
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embedding r, of each

+ x Residual Connections +LayerNorm word X
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Transformer Encoder
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Transformer Encoder

To recap: all of this looks
fancy, but ultimately it's
just producing a very
good contextualized
embedding r, of each
word Xx;
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Transformer Encoder

To recap: all of this looks
fancy, but ultimately it's
just producing a very
good contextualized
embedding r, of each
word Xx;
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Why stop with just 1
Transformer Encoder?
We could stack severall
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Transformer Encoder

To recap: all of this looks
fancy, but ultimately it's
just producing a very
good contextualized
embedding r, of each
word Xx;
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Transformer Encoder?
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Transformer Encoder
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The original Transformer model was intended for
Machine Translation, so it had Decoders, too
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Transformer Decoder "
Add & Norm

2 Feed
Forward

i

Add & Norm
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Transformer Encoders and Decoders

Transformer

,'.'.'.'.'.'.'.'.T'.'.'.'.'.'.'.'.'.'.'.'.'.T.'.'.'.'.'.'.'.'.'.'.'.'.t'.'.'.'.'.'.'.':"§

Decoder #1

Transformer Encoders
produce contextualized
embeddings of each word

Transformer Decoders
generate new sequences
of text




Transformer Encoders and Decoders

Transformer

,'.'.'.'.'.'.'.'.T'.'.'.'.'.'.'.'.'.'.'.'.'.T.'.'.'.'.'.'.'.'.'.'.'.'.t'.'.'.'.'.'.'.':"§

Decoder #1

Transformer Decoders are
identical to the Encoders,
except they have an
additional Attention Head
in between the Self-
Attention and FENN
layers.

This additional Attention
Head focuses on parts of
the encoder’s
representations.




Transformer Encoders and Decoders

Transformer

,'.'.'.'.'.'.'.'.T'.'.'.'.'.'.'.'.'.'.'.'.'.T.'.'.'.'.'.'.'.'.'.'.'.'.t'.'.'.'.'.'.'.':"§

Decoder #1

The query vector for a
Transformer Decoder's
Attention Head (not Self-
Attention Head) is from
the output of the previous
decoder layer.

However, the key and
value vectors are from the
Transformer Encoders’
outputs.




Transformer Encoders and Decoders

Transformer

,'.'.'.'.'.'.'.'.T'.'.'.'.'.'.'.'.'.'.'.'.'.T.'.'.'.'.'.'.'.'.'.'.'.'.t'.'.'.'.'.'.'.':"§

Decoder #1

The query, key, and value
vectors for a Transformer
Decoder’s Self-Attention
Head (not Attention
Head) are all from the
output of the previous
decoder layer.




Transformer Encoders and Decoders

Transformer

,'.'.'.'.'.'.'.'.T'.'.'.'.'.'.'.'.'.'.'.'.'.T.'.'.'.'.'.'.'.'.'.'.'.'.t'.'.'.'.'.'.'.':"§

Decoder #1

IMPORTANT

The Transformer
Decoders have positional
embeddings, too, just like
the Encoders.

Critically, each position is
only allowed to attend to
the previous indices. This
masked Attention
preserves it as being an
auto-regressive LM,




Softmax
*

Linear
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DECODER #2

ENCODER #2

Add & Normalize

POSITIONAL
ENCODING

X1

Thinking Machines https://jalammar.github.io/illustrated-transformer/




Decoding time step:@Z 3456 OUTPUT
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Linear + Softmax )
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https://jalammar.github.io/illustrated-transformer/




Decoding time step: 1@3 4 56 OUTPUT

f

Kencdec Vencdec C Linear + Softmax
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https://jalammar.github.io/illustrated-transformer/
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Figure 1: The Transformer - model architecture. Attention is All you Need (2017) https://arxiv.org/pdf/1706.03762.pdf




Loss Function: cross-entropy (predicting translated word)

Training Time: ~4 days on (8) GPUs

Layer Type

Complexity per Layer

Sequential Maximum Path Length
Operations

Self-Attention

Recurrent

Convolutional
Self-Attention (restricted)

O(n? - d)
O(n - d?)
O(k - n-d?)
O(r-n-d)

0(1) O(1)
O(n) O(n)
O(1) O(logk(n))
O(1) O(n/r)




n = sequence length

d = length of representation (vector)

Q: Is the complexity of self-attention good?

Layer Type

Complexity per Layer

Sequential Maximum Path Length
Operations

Self-Attention

Recurrent

Convolutional
Self-Attention (restricted)

O(n? - d)

O(1) O(1)
O(n) O(n)
O(1) O(logi(n))

o(1) O(n/r)




Important: when learning dependencies b/w words, you don't want
long paths. Shorter is better.

Self-attention connects all positions with a constant # of sequentially
executed operations, whereas RNNs require 0 (n).

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n)

Convolutional O(k - n - d?) O(logg(n))

Self-Attention (restricted) O(r-n-d) O(n/r)

https://arxiv.org/pdf/1706.03762.pdf



Machine Translation results: state-of-the-art (at the time)

BLEU Training Cost (FLOPs)

Model
EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0:510°2
GNMT + RL [38] 24.6 39.92 2.3-101° 1.4.1020
ConvS2S [9] 25.16  40.46 0.6-10% 1.5.10%0
MoE [32] 26.03  40.56 2.0-10'° 1.2.10%°
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 1020
GNMT + RL Ensemble [38] 2630  41.16 1.8:10%° 1.1-10*
ConvS2S Ensemble [9] 2636  41.29 7.7-101° 1.2.1021

Transformer (base model) 27.3 38.1 3.3:10'®
Transformer (big) 28.4 41.8 2:3-10*°




Machine Translation results: state-of-the-art (at the time)

You can train to translate from Language A to Language B.

Then train it to translate from Language B. to Language C.

Then, without training, it can translate from Language A to

Language C




* What if we don‘t want to decode/translate?
« Just want to perform a particular task (e.g., classification)
« Want even more robust, flexible, rich representation!

« Want positionality to play a more explicit role, while not

being restricted to a particular form (e.g., CNNs)
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BERT

Bidirectional Encoder Representations from Transformers




BERT

Bidirectional Encoder Representations from Transformers

Like Bidirectional LSTMs, let's look in both directions




BERT

Bidirectional Encoder Representations from Transformers

Let's only use Transformer Encoders, no Decoders




BERT

Bidirectional Encoder Representations from Transformers

It's a language model that builds rich representations




brown 0.92

lazy 0.05 BERT has 2 training objectives:
playful 0.03

1. Predict the Masked word (a la CBOW)
Encoder #8

f """"""" T i 15%ofall input words are randomly masked.
° E

80% become [MASK]
10% become revert back

10% become are deliberately corrupted
as wrong words




brown 0.92 . L
rT:Iz; 0.05 BERT has 2 training objectives:

playful 0.03

2. Two sentences are fed in at a time.
Predict the if the second sentence of
input truly follows the first one or not.




Masked Sentence A Masked Sentence B

*
\ Unlabeled Sentence A and B Pair

Pre-training

paper: https://arxiv.org/pdf/1810.04805.

Every two sentences are separated
by a <SEP> token.

50% of the time, the 2"d sentence is a
randomly selected sentence from the
corpus.

50% of the time, it truly follows the
first sentence in the corpus.
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Masked Sentence A Masked Sentence B

. 3
Unlabeled Sentence A and B Pair

Pre-training

paper: https://arxiv.org/pdf/1810.04805.

NOTE: BERT also embeds the inputs
by their WordPiece embeddings.

WordPiece is a sub-word tokenization

earns to merge and use characters

pased on which pairs maximize the

ikelihood of the training data if
added to the vocab.




One could extract the contextualized embeddings

Generate Contexualized Embeddings

ENCODER

ENCODER

ENCODER

Picture: https://jalammar.github.io/illustrated-bert/

The output of each encoder layer along
each token's path can be used as a
feature representing that token.

E=s] EREhes ERok=

EElg=gey p=p-po)

BT EEE

CIT T
LI 1]

But which one should we use?




Later layers have the best contextualized embeddings

Dev F1 Score

First Layer 91.0

Last Hidden Layer 94.9

Sum All 12
Layers

Second-to-Last
Hidden Layer

Sum Last Four
Hidden

Concat Last
Four Hidden
Picture: https://jalammar.github.io/illustrated-bert/




BERT yields state-of-the-art (SOTA) results on many tasks

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BILSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 913 454 80.0 82.3 56.0 75.1
BERTBAsE 84.6/83.4 Th 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).

paper: https://arxiv.org/pdf/1810.04805.
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Takeaway

BERT is incredible for learning
contextualized embeddings of words
and using transfer learning for other
tasks (e.g., classification).

Can’t generate new sentences though,
due to no decoders.




