
Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

Sequence Generation

Lecture 7: seq2seq + Attention

ScHoolboy Q
[seq2seq] + Attention (2019)

3

ANNOUNCEMENTS
• HW2 is out! Determine your mystery language.

• Research Proposals are due in 7 days, Sept 30.

• Office Hours:

• Today, my OH will be pushed back: 3:30pm – 5:30pm

• Please reserve your coding questions for the TFs and/or EdStem, as I hold

office hours solo, and debugging code can easily bottleneck the queue.

• Saturday @ 9am, I’ll host & record a review session. Submit questions on Ed’s Sway

RECAP: L5
• RNNs help capture more context

while avoiding sparsity, storage,
and compute issues!

• The hidden layer is what we care
about. It represents the word’s
“meaning”.

• Often suffers from
vanishing/exploding gradients

4

Input layer

Hidden layer

Output layer

𝑊

𝑈

#𝑦!

𝑥!

𝑉

RECAP: L6

• Gradient Clipping may help all NNs

• LSTMs (1997) are usually much

better than vanilla RNNs

• Captures long-range dependencies

• Doesn’t suffer as much w/ its gradients

5

Emilia told her project partner Alan about ___ latest idea.

He tends to stress out and put too much pressure on himself

RECAP: L6

6

𝐻"#$

𝐶"#$

𝐻"

𝐶"

𝐻"%$

𝐶"%$
some old memories are “forgotten” some new memories are made

a nonlinear weighted version of the
long-term memory becomes our
short-term memory

memory is written, erased, and
read by three gates – which are
influenced by 𝒙 and 𝒉

Diagram: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RECAP: L6

7

𝐻"#$

𝐶"#$

𝐻"

𝐶"

𝐻"%$

𝐶"%$
Forget Gate

Output Gate

Diagram: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Input Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Short-Term Memory (LSTMs)

Bi-LSTM and ELMo

seq2seq

seq2seq + Attention

Outline

8

Long Short-Term Memory (LSTMs)

Bi-LSTM and ELMo

seq2seq

seq2seq + Attention

Outline

9

LSTMs

They’ve been around for a while, but essentially unused until 2014!

10

LSTMs

11Long short-term memory. Hochreiter and Schmidhuber. Neural Computation (1997).

Sequential Modelling

If your goal isn’t to predict the next item in a sequence, you

could instead perform classification or regression task using

the learned, hidden representations.

IMPORTANT

12

Sequential Modelling

Input
layer

Hidden
layer

Output
layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥$ 𝑥& 𝑥' 𝑥(

𝑉 𝑉 𝑉

Language Modelling 1-to-1 tagging/classification

Input
layer

Hidden
layer

Output
layer

𝑊

𝑈

%𝑦$

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

%𝑦& %𝑦' %𝑦(

𝑥$ 𝑥& 𝑥' 𝑥(

𝑉 𝑉 𝑉

𝑥& 𝑥' 𝑥(𝑥)

13

Auto-regressive Non-Auto-regressive

Sequential Modelling

Input
layer

Hidden
layer

Output
layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥$ 𝑥& 𝑥' 𝑥(

𝑉 𝑉 𝑉

Language Modelling 1-to-1 tagging/classification

Input
layer

Hidden
layer

Output
layer

𝑊

𝑈

%𝑦$

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

%𝑦& %𝑦' %𝑦(

𝑥$ 𝑥& 𝑥' 𝑥(

𝑉 𝑉 𝑉

𝑥& 𝑥' 𝑥(𝑥)

14

Auto-regressive Non-Auto-regressive

If it’s regressive or not depends on if each

output is fed back in as the next input.

Sequential Modelling

Many-to-1 classification

Sentiment score

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

%𝑦(

𝑥$ 𝑥& 𝑥' 𝑥(

𝑉 𝑉 𝑉

15

Regression
Binary classification
Multi-class classification

Sequential Modelling

Many-to-1 classification

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥$ 𝑥& 𝑥' 𝑥(

𝑉 𝑉 𝑉

Sentiment score

16

Regression
Binary classification
Multi-class classification

Types of Prediction

17

(difficult scenario when your output has

exponential/infinite # of possibilities)

Regression I love hiking!

input output

0.9

Positive or negativeI love hiking!Binary Classification

Multi-class Classification Very positive, positive, neutral,
negative, or very negative

I love hiking!

Structured Prediction I love hiking! PRP VBP NN

Types of Prediction (an independent axis)

18

Unconditioned Prediction: predict some single variable. P(X)

Conditioned Prediction: predict the probability of an output variable,

given the input. P(Y|X)

Example: language modelling. X = “I like hiking!”

Example: text classification. Y = positive. X = “I like hiking!”

Types of Prediction (an independent axis)

19

Unconditioned Prediction: predict some single variable. P(X)

Conditioned Prediction: predict the probability of an output variable,

given the input. P(Y|X)

Example: language modelling. X = “I like hiking!”

Example: text classification. Y = positive. X = “I like hiking!”

(un)conditioned is referring to if
you’re entire model is predicated
upon some particular input.

Types of Prediction (an independent axis)

20

Unconditioned Prediction: predict some single variable. P(X)

Conditioned Prediction: predict the probability of an output variable,

given the input. P(Y|X)

Example: language modelling. X = “I like hiking!”

Example: text classification. Y = positive. X = “I like hiking!”

Language modelling is unconditional

prediction, but one could do so by making

use of conditional probabilities of X

Types of Unconditional Prediction

21

Types of Unconditional Prediction

22

Formally, a language model estimates the probability of a

sequence, so this is illegal. It cheats in a manner that we call them

masked language models (not proper prob. dist and they don’t

estimate sequences)

Types of Conditional Prediction

23

Many-to-1 classification

𝑃 𝑦 𝑋

Many-to-many classification

This concludes the foundation in sequential representation.

Most state-of-the-art advances are based on those core

RNN/LSTM ideas. But, with tens of thousands of researchers and

hackers exploring deep learning, there are many tweaks that

haven proven useful.

(aka this is where things get crazy.)

24

Long Short-Term Memory (LSTMs)

Bi-LSTM and ELMo

seq2seq

seq2seq + Attention

Outline

25

Outline

26

Long Short-Term Memory (LSTMs)

Bi-LSTM and ELMo

seq2seq

seq2seq + Attention

RNNs/LSTMs use the left-to-right context and sequentially

process data.

If you have full access to the data at testing time, why not

make use of the flow of information from right-to-left, also?

RNN Extensions: Bi-directional LSTMs

27

RNN Extensions: Bi-directional LSTMs

Input layer

Hidden layer

𝑥$ 𝑥& 𝑥' 𝑥(

ℎ$* ℎ&* ℎ'* ℎ(*

For brevity, let’s use the follow schematic to represent an RNN

28

RNN Extensions: Bi-directional LSTMs

Input layer

Hidden layer

𝑥$ 𝑥& 𝑥' 𝑥(𝑥$ 𝑥& 𝑥' 𝑥(

ℎ$* ℎ&* ℎ'* ℎ(* ℎ$+ ℎ&+ ℎ'+ ℎ(+

For brevity, let’s use the follow schematic to represent an RNN

29

RNN Extensions: Bi-directional LSTMs

Input layer

Hidden layer

𝑥$ 𝑥& 𝑥' 𝑥(𝑥$ 𝑥& 𝑥' 𝑥(

ℎ$* ℎ&* ℎ'* ℎ(* ℎ$+ ℎ&+ ℎ'+ ℎ(+

ℎ$*
ℎ$+

ℎ&*
ℎ&+

ℎ'*
ℎ'+

ℎ(*
ℎ(+Concatenate the hidden layers

30

RNN Extensions: Bi-directional LSTMs

Input layer

Hidden layer

Output layer

𝑥$ 𝑥& 𝑥' 𝑥(𝑥$ 𝑥& 𝑥' 𝑥(

ℎ$* ℎ&* ℎ'* ℎ(* ℎ$+ ℎ&+ ℎ'+ ℎ(+

ℎ$*
ℎ$+

ℎ&*
ℎ&+

ℎ'*
ℎ'+

ℎ(*
ℎ(+

%𝑦$ %𝑦& %𝑦' %𝑦(

Concatenate the hidden layers

31

• Usually performs at least as well as uni-directional RNNs/LSTMs

RNN Extensions: Bi-directional LSTMs

BI-LSTM ISSUES?

BI-LSTM STRENGTHS?

• Slower to train

• Only possible if access to full data is allowed

32

Type of Unconditional Prediction

33

RNN Extensions: Stacked LSTMs

Input layer

Hidden layer #1

𝑥$ 𝑥& 𝑥' 𝑥(

ℎ$* ℎ&* ℎ'* ℎ(*

Hidden layers provide an

abstraction (holds “meaning”).

Stacking hidden layers provides

increased abstractions.

34

RNN Extensions: Stacked LSTMs

Input layer

Hidden layer #1

𝑥$ 𝑥& 𝑥' 𝑥(

ℎ$* ℎ&* ℎ'* ℎ(*

ℎ(*&ℎ'*&ℎ&*&ℎ$*&
Hidden layer #2

Hidden layers provide an

abstraction (holds “meaning”).

Stacking hidden layers provides

increased abstractions.

35

RNN Extensions: Stacked LSTMs

Input layer

Hidden layer #1

𝑥$ 𝑥& 𝑥' 𝑥(

ℎ$* ℎ&* ℎ'* ℎ(*

ℎ(*&ℎ'*&ℎ&*&ℎ$*&

%𝑦$ %𝑦& %𝑦' %𝑦(Output layer

Hidden layer #2

Hidden layers provide an

abstraction (holds “meaning”).

Stacking hidden layers provides

increased abstractions.

36

ELMo: Stacked Bi-directional LSTMs

General Idea:

• Goal is to get highly rich, contextualized embeddings (word tokens)

• Use both directions of context (bi-directional), with increasing

abstractions (stacked)

• Linearly combine all abstract representations (hidden layers) and

optimize w.r.t. a particular task (e.g., sentiment classification)

37

ELMo: Stacked Bi-directional LSTMs

Illustration: http://jalammar.github.io/illustrated-bert/ 38

http://jalammar.github.io/illustrated-bert/

Illustration: http://jalammar.github.io/illustrated-bert/ 39

http://jalammar.github.io/illustrated-bert/

ELMo: Stacked Bi-directional LSTMs

Deep contextualized word representations. Peters et al. NAACL 2018. 40

https://arxiv.org/pdf/1802.05365.pdf

ELMo: Stacked Bi-directional LSTMs

Deep contextualized word representations. Peters et al. NAACL 2018. 41

The higher layer seems to learn semantics while the lower layer probably

captured syntactic features

https://arxiv.org/pdf/1802.05365.pdf

ELMo: Stacked Bi-directional LSTMs

• ELMo yielded incredibly good contextualized embeddings, which yielded

SOTA results when applied to many NLP tasks.

• Main ELMo takeaway: given enough training data, having tons of explicit

connections between your vectors is useful

(system can determine how to best use context)

ELMo Slides: https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018 42

https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018

43

• Language Modelling may help us for other tasks

• LSTMs do a great job of capturing “meaning”, which can be
used for almost every task

• Given a sequence of N words, we can produce 1 output

• Given a sequence of N words, we can produce N outputs

RECAP

44

• Language Modelling may help us for other tasks

• LSTMs do a great job of capturing “meaning”, which can be
used for almost every task

• Given a sequence of N words, we can produce 1 output

• Given a sequence of N words, we can produce N outputs

• What if we wish to have M outputs?

RECAP

45

We want to produce a variable-length output
(e.g., n à m predictions)

Thank you for visiting! Děkujeme za návštěvu!

Outline

46

Long Short-Term Memory (LSTMs)

Bi-LSTM and ELMo

seq2seq

seq2seq + Attention

Outline

47

Long Short-Term Memory (LSTMs)

Bi-LSTM and ELMo

seq2seq

seq2seq + Attention

Sequence-to-Sequence (seq2seq)

• If our input is a sentence in Language A, and we wish to translate it to

Language B, it is clearly sub-optimal to translate word by word (like our

current models are suited to do).

• Instead, let a sequence of tokens be the unit that we ultimately wish to

work with (a sequence of length N may emit a sequences of length M)

• seq2seq models are comprised of 2 RNNs: 1 encoder, 1 decoder

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

ENCODER RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$-

<s>

DECODER RNN

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$-

<s>

DECODER RNN

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Le

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s>

DECODER RNN

Le

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Le

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s>

DECODER RNN

Le

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Le chien

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien

DECODER RNN

ℎ'-

Le

Le chien

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien

DECODER RNN

ℎ'-

Le

Le chien brun

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien brun

DECODER RNN

ℎ'- ℎ(-

Le

Le chien brun

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien brun

DECODER RNN

ℎ'- ℎ(-

Le

Le chien brun a

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien brun a

DECODER RNN

ℎ'- ℎ(- ℎ)-

Le

Le chien brun a

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien brun a

DECODER RNN

ℎ'- ℎ(- ℎ)-

Le

Le chien brun a couru

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien brun a

DECODER RNN

couru

ℎ'- ℎ(- ℎ)-

Le

ℎ.-

Le chien brun a couru

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien brun a

DECODER RNN

couru

ℎ'- ℎ(- ℎ)-

Le

ℎ.-

Le chien brun a couru <s>

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien brun a

DECODER RNN

couru

ℎ'- ℎ(- ℎ)-

Le

ℎ.-

%𝑦$ %𝑦& %𝑦' %𝑦(%𝑦) %𝑦.

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien brun a

DECODER RNN

couru

ℎ'- ℎ(- ℎ)-

Le

ℎ.-

%𝑦$ %𝑦& %𝑦' %𝑦(%𝑦) %𝑦.

Training occurs like RNNs typically do; the
loss (from the decoder outputs) is calculated,
and we update weights all the way to the
beginning (encoder)

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien brun a

DECODER RNN

couru

ℎ'- ℎ(- ℎ)-

Le

ℎ.-

%𝑦$ %𝑦& %𝑦' %𝑦(%𝑦) %𝑦.

Testing generates decoder outputs one word
at a time, until we generate a <S> token.

Each decoder’s !𝒚𝒊 becomes the input 𝒙𝒊"𝟏

Sequence-to-Sequence (seq2seq)

See any issues with this traditional seq2seq paradigm?

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien brun a

DECODER RNN

couru

ℎ'- ℎ(- ℎ)-

Le

ℎ.-

%𝑦$ %𝑦& %𝑦' %𝑦(%𝑦) %𝑦.

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien brun a

DECODER RNN

couru

ℎ'- ℎ(- ℎ)-

Le

ℎ.-

%𝑦$ %𝑦& %𝑦' %𝑦(%𝑦) %𝑦.

It’s crazy that the entire “meaning” of the 1st sequence
is expected to be packed into this one embedding,
and that the encoder then never interacts w/ the
decoder again. Hands free.

Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays attention to

a distribution of all of the encoder’s hidden states?

Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays attention to

a distribution of all of the encoder’s hidden states?

Intuition: when we (humans) translate a sentence, we don’t just

consume the original sentence, reflect on the meaning of the last

word, then regurgitate in a new language; we continuously think

back at the original sentence while focusing on different parts.

Attention

The concept of attention within cognitive neuroscience and

psychology dates back to the 1800s. [William James, 1890].

Nadaray-Watson kernel regression proposed in 1964. It locally

weighted its predictions.

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

.4? .3? .1? .2?
ℎ$, ℎ&, ℎ', ℎ(,

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ$, ℎ&, ℎ', ℎ(,

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

ℎ$-

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ$, ℎ&, ℎ', ℎ(, ℎ$-

Separate FFNN

ℎ$, ℎ$-

𝑒$ 1.5

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ$, ℎ&, ℎ', ℎ(, ℎ$-

Separate FFNN

ℎ&, ℎ$-

𝑒& 0.9

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ$, ℎ&, ℎ', ℎ(, ℎ$-

Separate FFNN

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

ℎ', ℎ$-

𝑒' 0.2

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ$, ℎ&, ℎ', ℎ(, ℎ$-

Separate FFNN

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

ℎ(, ℎ$-

𝑒(−0.5

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ$, ℎ&, ℎ', ℎ(, ℎ$-

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

𝑒(−0.5

Attention (raw scores)

𝑒' 0.2
𝑒& 0.9
𝑒$ 1.5

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ$, ℎ&, ℎ', ℎ(, ℎ$-

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

𝑒(−0.5

Attention (raw scores)

𝑒' 0.2
𝑒& 0.9
𝑒$ 1.5

Attention (softmax’d)

𝑎!$ =
exp(𝑒!)

∑!/ exp(𝑒$)<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ$, ℎ&, ℎ', ℎ(, ℎ$-

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

𝑒(−0.5

Attention (raw scores)

𝑒' 0.2
𝑒& 0.9
𝑒$ 1.5

Attention (softmax’d)

𝑎$$ = 0.51
𝑎%$ = 0.28
𝑎&$ = 0.14
𝑎&$ = 0.07

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ$, ℎ&, ℎ', ℎ(, ℎ$-

Attention (softmax’d)

𝑎$$ = 0.51
𝑎%$ = 0.28
𝑎&$ = 0.14
𝑎&$ = 0.07

𝑎$$ 𝑎&$ 𝑎'$ 𝑎($

We multiply each encoder’s hidden layer

by its 𝑎'$ attention weights to create a
context vector 𝑐$(

𝑐$-

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ$, ℎ&, ℎ', ℎ(,

<s>

[ℎ$-; 𝑐$-]

𝑐$-

𝑎$$ 𝑎&$ 𝑎'$ 𝑎($

REMEMBER: each attention weight 𝑎'
) is based on the decoder’s current hidden state, too.

%𝑦$
Le

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ$, ℎ&, ℎ', ℎ(,

<s>

[ℎ$-; 𝑐$-]

𝑐&-

𝑎$& 𝑎&& 𝑎'& 𝑎(&

REMEMBER: each attention weight 𝑎'
) is based on the decoder’s current hidden state, too.

%𝑦$
Le

Le

[ℎ&-; 𝑐&-]

%𝑦&
chien

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ$, ℎ&, ℎ', ℎ(,

<s>

[ℎ$-; 𝑐$-]

𝑐'-

𝑎$' 𝑎&' 𝑎'' 𝑎('

REMEMBER: each attention weight 𝑎'
) is based on the decoder’s current hidden state, too.

%𝑦$
Le

Le

[ℎ&-; 𝑐&-]

%𝑦&
chien

[ℎ'-; 𝑐'-]

%𝑦'
brun

chien

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ$, ℎ&, ℎ', ℎ(,

<s>

[ℎ$-; 𝑐$-]

𝑐(-

𝑎$(𝑎&(𝑎'(𝑎((

REMEMBER: each attention weight 𝑎'
) is based on the decoder’s current hidden state, too.

%𝑦$
Le

Le

[ℎ&-; 𝑐&-]

%𝑦&
chien

[ℎ'-; 𝑐'-]

%𝑦'
brun

chien

[ℎ(-; 𝑐(-]

%𝑦(
a

brun

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ$, ℎ&, ℎ', ℎ(,

<s>

[ℎ$-; 𝑐$-]

𝑐)-

𝑎$) 𝑎&) 𝑎') 𝑎()

REMEMBER: each attention weight 𝑎'
) is based on the decoder’s current hidden state, too.

%𝑦$
Le

Le

[ℎ&-; 𝑐&-]

%𝑦&
chien

[ℎ'-; 𝑐'-]

%𝑦'
brun

chien

[ℎ(-; 𝑐(-]

%𝑦(
a

brun

[ℎ)-; 𝑐)-]

%𝑦(
couru

a

DECODER RNN

87Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

For convenience, here’s the Attention calculation summarized on 1 slide

88Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

For convenience, here’s the Attention calculation summarized on 1 slide

The Attention mechanism that produces

scores doesn’t have to be a FFNN like I

illustrated. It can be any function you wish.

89Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Popular Attention Scoring functions:

seq2seq + Attention

Attention:

• greatly improves seq2seq results

• allows us to visualize the

contribution each encoding word

gave for each decoder’s word

Image source: Fig 3 in Bahdanau et al., 2015

https://arxiv.org/pdf/1409.0473.pdf

seq2seq + Attention

Attention:

• greatly improves seq2seq results

• allows us to visualize the

contribution each encoding word

gave for each decoder’s word

Image source: Fig 3 in Bahdanau et al., 2015

Takeaway:

Having a separate encoder and decoder
allows for n à m length predictions.

Attention is powerful; allows us to
conditionally weight our focus

https://arxiv.org/pdf/1409.0473.pdf

Constituency Parsing

Input: dogs chase cats

Output:

or a flattened representation

Constituency Parsing

Input: I shot an elephant in my pajamas

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Output:

Results

https://aclanthology.org/2020.findings-emnlp.65.pdf

Image Captioning

Input: image

Output: generated text

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)

Image Captioning

Input: image

Output: generated text

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)

Image Captioning

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)

Image Captioning

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)

99

• LSTMs yielded state-of-the-art results on most NLP tasks (2014-2018)

• seq2seq+Attention was an even more revolutionary idea (Google
Translate used it)

• Attention allows us to place appropriate weight to the encoder’s
hidden states

• But, LSTMs require us to iteratively scan each word and wait until we’re
at the end before we can do anything

SUMMARY

BACKUP

100

