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ANNOUNCEMENTS
• HW2 is out! Determine your mystery language.

• Research Proposals are due in 7 days, Sept 30.

• Office Hours:

• Today, my OH will be pushed back: 3:30pm – 5:30pm

• Please reserve your coding questions for the TFs and/or EdStem, as I hold 

office hours solo, and debugging code can easily bottleneck the queue.

• Saturday @ 9am, I’ll host & record a review session. Submit questions on Ed’s Sway



RECAP: L5
• RNNs help capture more context 

while avoiding sparsity, storage, 
and compute issues!

• The hidden layer is what we care 
about. It represents the word’s 
“meaning”.

• Often suffers from
vanishing/exploding gradients
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Input layer
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RECAP: L6

• Gradient Clipping may help all NNs

• LSTMs (1997) are usually much 

better than vanilla RNNs

• Captures long-range dependencies

• Doesn’t suffer as much w/ its gradients
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Emilia told her project partner Alan about ___ latest idea.

He tends to stress out and put too much pressure on himself



RECAP: L6
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𝐻"#$

𝐶"#$

𝐻"

𝐶"

𝐻"%$

𝐶"%$
some old memories are “forgotten” some new memories are made

a nonlinear weighted version of the 
long-term memory becomes our 
short-term memory

memory is written, erased, and 
read by three gates – which are 
influenced by 𝒙 and 𝒉

Diagram: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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𝐻"#$

𝐶"#$

𝐻"

𝐶"

𝐻"%$

𝐶"%$
Forget Gate

Output Gate

Diagram: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Input Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Long Short-Term Memory (LSTMs)

Bi-LSTM and ELMo

seq2seq

seq2seq + Attention
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LSTMs

They’ve been around for a while, but essentially unused until 2014!
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LSTMs

11Long short-term memory. Hochreiter and Schmidhuber. Neural Computation (1997).



Sequential Modelling

If your goal isn’t to predict the next item in a sequence, you 

could instead perform classification or regression task using 

the learned, hidden representations.

IMPORTANT
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Sequential Modelling
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Auto-regressive Non-Auto-regressive
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Auto-regressive Non-Auto-regressive

If it’s regressive or not depends on if each 

output is fed back in as the next input.



Sequential Modelling

Many-to-1 classification

Sentiment score
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Regression
Binary classification
Multi-class classification



Sequential Modelling

Many-to-1 classification
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Regression
Binary classification
Multi-class classification



Types of Prediction
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(difficult scenario when your output has

exponential/infinite # of possibilities)

Regression I love hiking!

input output

0.9

Positive or negativeI love hiking!Binary Classification

Multi-class Classification Very positive, positive, neutral,
negative, or very negative

I love hiking!

Structured Prediction I love hiking! PRP VBP NN



Types of Prediction (an independent axis)
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Unconditioned Prediction: predict some single variable. P(X)

Conditioned Prediction: predict the probability of an output variable,

given the input. P(Y|X)

Example: language modelling. X = “I like hiking!”

Example: text classification. Y = positive. X = “I like hiking!”



Types of Prediction (an independent axis)
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Unconditioned Prediction: predict some single variable. P(X)

Conditioned Prediction: predict the probability of an output variable,

given the input. P(Y|X)

Example: language modelling. X = “I like hiking!”

Example: text classification. Y = positive. X = “I like hiking!”

(un)conditioned is referring to if 
you’re entire model is predicated 
upon some particular input. 



Types of Prediction (an independent axis)
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Unconditioned Prediction: predict some single variable. P(X)

Conditioned Prediction: predict the probability of an output variable,

given the input. P(Y|X)

Example: language modelling. X = “I like hiking!”

Example: text classification. Y = positive. X = “I like hiking!”

Language modelling is unconditional 

prediction, but one could do so by making 

use of conditional probabilities of X



Types of Unconditional Prediction
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Types of Unconditional Prediction
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Formally, a language model estimates the probability of a 

sequence, so this is illegal. It cheats in a manner that we call them 

masked language models (not proper prob. dist and they don’t 

estimate sequences)



Types of Conditional Prediction
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Many-to-1 classification

𝑃 𝑦 𝑋

Many-to-many classification



This concludes the foundation in sequential representation.

Most state-of-the-art advances are based on those core 

RNN/LSTM ideas. But, with tens of thousands of researchers and 

hackers exploring deep learning, there are many tweaks that 

haven proven useful.

(aka this is where things get crazy.)
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Bi-LSTM and ELMo
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Outline
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Long Short-Term Memory (LSTMs)

Bi-LSTM and ELMo
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seq2seq + Attention



RNNs/LSTMs use the left-to-right context and sequentially 

process data.

If you have full access to the data at testing time, why not 

make use of the flow of information from right-to-left, also?

RNN Extensions: Bi-directional LSTMs
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RNN Extensions: Bi-directional LSTMs

Input layer

Hidden layer

𝑥$ 𝑥& 𝑥' 𝑥(

ℎ$* ℎ&* ℎ'* ℎ(*

For brevity, let’s use the follow schematic to represent an RNN
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For brevity, let’s use the follow schematic to represent an RNN
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RNN Extensions: Bi-directional LSTMs
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RNN Extensions: Bi-directional LSTMs
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Concatenate the hidden layers
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• Usually performs at least as well as uni-directional RNNs/LSTMs

RNN Extensions: Bi-directional LSTMs

BI-LSTM ISSUES?

BI-LSTM STRENGTHS?

• Slower to train

• Only possible if access to full data is allowed

32



Type of Unconditional Prediction
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RNN Extensions: Stacked LSTMs

Input layer

Hidden layer #1

𝑥$ 𝑥& 𝑥' 𝑥(

ℎ$* ℎ&* ℎ'* ℎ(*

Hidden layers provide an 

abstraction (holds “meaning”). 

Stacking hidden layers provides 

increased abstractions.
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RNN Extensions: Stacked LSTMs

Input layer
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Hidden layer #2

Hidden layers provide an 

abstraction (holds “meaning”). 

Stacking hidden layers provides 

increased abstractions.
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RNN Extensions: Stacked LSTMs

Input layer

Hidden layer #1

𝑥$ 𝑥& 𝑥' 𝑥(

ℎ$* ℎ&* ℎ'* ℎ(*

ℎ(*&ℎ'*&ℎ&*&ℎ$*&

%𝑦$ %𝑦& %𝑦' %𝑦(Output layer

Hidden layer #2

Hidden layers provide an 

abstraction (holds “meaning”). 

Stacking hidden layers provides 

increased abstractions.
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ELMo: Stacked Bi-directional LSTMs

General Idea:

• Goal is to get highly rich, contextualized embeddings (word tokens)

• Use both directions of context (bi-directional), with increasing 

abstractions (stacked)

• Linearly combine all abstract representations (hidden layers) and 

optimize w.r.t. a particular task (e.g., sentiment classification) 
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ELMo: Stacked Bi-directional LSTMs

Illustration: http://jalammar.github.io/illustrated-bert/ 38

http://jalammar.github.io/illustrated-bert/


Illustration: http://jalammar.github.io/illustrated-bert/ 39

http://jalammar.github.io/illustrated-bert/


ELMo: Stacked Bi-directional LSTMs

Deep contextualized word representations. Peters et al. NAACL 2018. 40

https://arxiv.org/pdf/1802.05365.pdf


ELMo: Stacked Bi-directional LSTMs

Deep contextualized word representations. Peters et al. NAACL 2018. 41

The higher layer seems to learn semantics while the lower layer probably 

captured syntactic features

https://arxiv.org/pdf/1802.05365.pdf


ELMo: Stacked Bi-directional LSTMs

• ELMo yielded incredibly good contextualized embeddings, which yielded 

SOTA results when applied to many NLP tasks.

• Main ELMo takeaway: given enough training data, having tons of explicit 

connections between your vectors is useful

(system can determine how to best use context)

ELMo Slides: https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018 42

https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018
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• Language Modelling may help us for other tasks

• LSTMs do a great job of capturing “meaning”, which can be 
used for almost every task

• Given a sequence of N words, we can produce 1 output

• Given a sequence of N words, we can produce N outputs

RECAP
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• Language Modelling may help us for other tasks

• LSTMs do a great job of capturing “meaning”, which can be 
used for almost every task

• Given a sequence of N words, we can produce 1 output

• Given a sequence of N words, we can produce N outputs

• What if we wish to have M outputs?

RECAP
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We want to produce a variable-length output
(e.g., n à m predictions)

Thank you for visiting! Děkujeme za návštěvu!



Outline
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Long Short-Term Memory (LSTMs)

Bi-LSTM and ELMo

seq2seq

seq2seq + Attention
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Long Short-Term Memory (LSTMs)
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Sequence-to-Sequence (seq2seq)

• If our input is a sentence in Language A, and we wish to translate it to 

Language B, it is clearly sub-optimal to translate word by word (like our 

current models are suited to do).

• Instead, let a sequence of tokens be the unit that we ultimately wish to 

work with (a sequence of length N may emit a sequences of length M)

• seq2seq models are comprised of 2 RNNs: 1 encoder, 1 decoder



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN



Sequence-to-Sequence (seq2seq)
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is the initial state of the decoder RNN

ENCODER RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$-

<s>

DECODER RNN

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$-

<s>

DECODER RNN

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN

Le



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s>

DECODER RNN

Le

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN

Le



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s>

DECODER RNN

Le

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN

Le chien



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien

DECODER RNN

ℎ'-

Le

Le chien

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien

DECODER RNN

ℎ'-

Le

Le chien brun

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien brun

DECODER RNN

ℎ'- ℎ(-

Le

Le chien brun

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien brun

DECODER RNN

ℎ'- ℎ(-

Le

Le chien brun a

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,

The brown dog ran

ENCODER RNN

ℎ$- ℎ&-

<s> chien brun a

DECODER RNN

ℎ'- ℎ(- ℎ)-

Le

Le chien brun a

The final hidden state of the encoder RNN 
is the initial state of the decoder RNN



Sequence-to-Sequence (seq2seq)
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Sequence-to-Sequence (seq2seq)
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Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ$, ℎ&, ℎ', ℎ(,
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ENCODER RNN
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Le

ℎ.-

%𝑦$ %𝑦& %𝑦' %𝑦( %𝑦) %𝑦.

Training occurs like RNNs typically do; the 
loss (from the decoder outputs) is calculated, 
and we update weights all the way to the 
beginning (encoder)



Sequence-to-Sequence (seq2seq)
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%𝑦$ %𝑦& %𝑦' %𝑦( %𝑦) %𝑦.

Testing generates decoder outputs one word 
at a time, until we generate a <S> token.

Each decoder’s !𝒚𝒊 becomes the input 𝒙𝒊"𝟏



Sequence-to-Sequence (seq2seq)

See any issues with this traditional seq2seq paradigm?
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Sequence-to-Sequence (seq2seq)
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%𝑦$ %𝑦& %𝑦' %𝑦( %𝑦) %𝑦.

It’s crazy that the entire “meaning” of the 1st sequence 
is expected to be packed into this one embedding, 
and that the encoder then never interacts w/ the 
decoder again. Hands free.



Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays attention to 

a distribution of all of the encoder’s hidden states?



Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays attention to 

a distribution of all of the encoder’s hidden states?

Intuition: when we (humans) translate a sentence, we don’t just 

consume the original sentence, reflect on the meaning of the last 

word, then regurgitate in a new language; we continuously think 

back at the original sentence while focusing on different parts.



Attention

The concept of attention within cognitive neuroscience and 

psychology dates back to the 1800s. [William James, 1890].

Nadaray-Watson kernel regression proposed in 1964. It locally 

weighted its predictions.



seq2seq + Attention
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Q: How do we determine how much to pay attention to each of the encoder’s hidden layers? 

.4? .3? .1? .2?
ℎ$, ℎ&, ℎ', ℎ(,
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seq2seq + Attention
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Q: How do we determine how much to pay attention to each of the encoder’s hidden layers? 

ℎ$, ℎ&, ℎ', ℎ(, ℎ$-

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning) 
and all of the encoder’s hidden layers!
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𝑒' 0.2
𝑒& 0.9
𝑒$ 1.5

<s>

DECODER RNN



seq2seq + Attention
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For convenience, here’s the Attention calculation summarized on 1 slide
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For convenience, here’s the Attention calculation summarized on 1 slide

The Attention mechanism that produces 

scores doesn’t have to be a FFNN like I 

illustrated. It can be any function you wish.
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Popular Attention Scoring functions:



seq2seq + Attention

Attention:

• greatly improves seq2seq results

• allows us to visualize the 

contribution each encoding word 

gave for each decoder’s word

Image source: Fig 3 in Bahdanau et al., 2015

https://arxiv.org/pdf/1409.0473.pdf


seq2seq + Attention

Attention:

• greatly improves seq2seq results

• allows us to visualize the 

contribution each encoding word 

gave for each decoder’s word

Image source: Fig 3 in Bahdanau et al., 2015

Takeaway:

Having a separate encoder and decoder
allows for n à m length predictions.

Attention is powerful; allows us to 
conditionally weight our focus

https://arxiv.org/pdf/1409.0473.pdf


Constituency Parsing

Input: dogs chase cats

Output:

or a flattened representation



Constituency Parsing

Input: I shot an elephant in my pajamas

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Output:



Results

https://aclanthology.org/2020.findings-emnlp.65.pdf



Image Captioning

Input: image

Output: generated text

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)
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Image Captioning

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)
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• LSTMs yielded state-of-the-art results on most NLP tasks (2014-2018)

• seq2seq+Attention was an even more revolutionary idea (Google 
Translate used it)

• Attention allows us to place appropriate weight to the encoder’s 
hidden states

• But, LSTMs require us to iteratively scan each word and wait until we’re 
at the end before we can do anything

SUMMARY



BACKUP
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