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ANNOUNCEMENTS

HW?2 is out! Determine your mystery language.
Research Proposals are due in 7 days, Sept 30.
Office Hours:

« Today, my OH will be pushed back: 3:30pm - 5:30pm

* Please reserve your coding guestions for the TFs and/or EdStem, as | hold
office hours solo, and debugging code can easily bottleneck the queue.

Saturday @ 9am, I'll host & record a review session. Submit questions on Ed's Sway



RECAP: LS

* RNNs help capture more context
while avoiding sparsity, storage,
and compute issues!

* The hidden layer is what we care
about. It represents the word’s
“meaning”.

 Often suffers from
vanishing/exploding gradients

Output layer

Hidden layer

Input layer




RECAP: L6

¢ Gradient Cllpplng may help a” NNS | Without clipping With clipping

e LSTMs (1997) are usually much
better than vanilla RNNs

J( w,b)

« Captures long-range dependencies

J(w,b)

« Doesn't suffer as much w/ its gradients

Emilia told her project partner Alan about ___latest idea.

He tends to stress out and put too much pressure on himself




RECAP: L6
- ~ )

memory is written, erased, and
read by three gates — which are
influenced by x and h

Ht I Ht+1

a nonlinear weighted version of the
long-term memory becomes our
short-term memory

Neural Network Pointwise Vector
Diagram: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Layer Operation Transfer COnCRSanE Copy



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

RECAP: L6

t+1
(7 Input Gate 2

@ Output Gate

Neural Network Pointwise Vector

Diagram: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Layer Operation Transfer Concatenate Copy



https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTMs

They've been around for a while, but essentially unused until 2014!

Juergen Schmidhuber

The Swiss Al Lab, IDSIA, University of Lugano
Verified email at idsia.ch - Homepage

computer science artificial intelligence reinforcement learning neural networks physics

TITLE CITED BY

Long short-term memory 54040
S Hochreiter, J Schmidhuber
Neural computation 9 (8), 1735-1780




LSTMs
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Figure 1: Architecture of memory cell ¢; (the box) and its gate units in;, out;. The self-recurrent
connection (with weight 1.0) indicates feedback with a delay of 1 time step. It builds the basis of
the “constant error carrousel” CEC. The gate units open and close access to CEC. See text and
appendiz A.1 for details.

A\

Why gate units? To avoid input weight conflicts, in; controls the error flow to memory cell
c;'s input connections w. ;. To circumvent ¢;’s output weight conflicts, out; controls the error
flow from unit j’s output connections. In other words, the net can use in; to decide when to keep
or override information in memory cell ¢;, and out; to decide when to access memory cell ¢; and

when to prevent other units from being perturbed by ¢; (see Figure 1).

Long short-term memory. Hochreiter and Schmidhuber. Neural Computation (1997). 11



Sequential Modelling

IMPORTANT

I your goal isn't to predict the next item in a sequence, you

could instead perform classification or regression task using

the learned, hidden representations.

12



Sequential Modelling

Output
layer
Hidden

layer

Input
layer

Language Modelling

X2

il

©0000

wi
(©550)

X1

X3 X4
UT UT
5 ©o009 b cooog b
wh oyl
@) (6509
X2 X3

Auto-regressive

X5
([©5S9)
ol
wi
(@009

X4

1-to-1 tagging/classification

V1 Y2 y y
Output @ &

layer [] UT UT UT
Hidden 03000 B 5550) 1 @550

layer WT WT WT WT
nput  ©299)  (G800) (0999) (9299

Iayer X1 X9 X3 X4

Non-Auto-regressive

13



Sequential Modelling

Language Modelling

1-to-1 tagging/classification

If it's regressive or not depends on if each

output is fed back in as the next input.

Auto-regressive

Non-Auto-regressive

14



Sequential Modelling Regression
E— Binary classification

Multi-class classification

Many-to-1 classification

Sentiment score

A\
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X1 X2 X3 X4
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Sequential Modelling Regression
E— Binary classification

.- : Multi-class classification
Many-to-1 classification

Sentiment score
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Types ot Prediction

Input output
Regressmn | love hiking! 0.9
Binary Classification | love hiking! Positive or negative
Mum_dassClaSSIflcatlonllovehlkmgl ............. Veryposmveposmve .

negative, or very negative

Structured Prediction | love hiking! PRP VBP NN

(difficult scenario when your output has

exponential/infinite # of possibilities)



Types of Prediction (an independent axis)

Unconditioned Prediction: predict some single variable. P(X)

Example: language modelling. X = “I like hiking!”

Conditioned Prediction: predict the probability of an output variable,
given the input. P(YIX)

Example: text classification. Y = positive. X = “I like hiking!”

18



Types of Prediction (an independent axis)

Unconditioned Prediction

(un)conditioned is referring to if
you're entire model is predicated
upon some particular input.




Types of Prediction (an independent axis)

Unconditioned Prediction

Example: language modelling. X = “| like hiking!”

Language modelling is unconditional

prediction, but one could do so by making

use of conditional probabilities of X




Types of Unconditional Prediction

Independent Prediction | |H|HEN

1X| H EEEN

HE (mEN

P(X) =]] P(z:) OOOmO0
: . EEEE

i=1 (e.g. unigram model) CICICICIC I

Left-to-right Markov Chain (order n-1)
| X|

P(X) - H P(x'i,lx'i—'n-i-la oisnxe )xi—l)
=1 (e.g. n-gram LM, feed-forward LM)

Left-to-right Autoregressive Prediction
| X|

P(X) =]] P(zilzy, ..., zi-1)
i=1 (e.g. RNN LM)




Types of Unconditional Prediction

Bidirectional Prediction AEEEER
IX| H EEER
EREEEN

P(X) # [ P(ailes) -
i=1  (e.g. masked language mode/) @HREEREN

Formally, a language model estimates the probability of a
sequence, so this is illegal. It cheats in a manner that we call them
masked language models (not proper prob. dist and they don't

estimate sequences)
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Types ot Conditional Prediction

Many-to-1 classification

P(y|X)

Many-to-many classification

Source X Target Y
EEEREEER W

Non-autoregressive Conditioned Prediction
Y|
P(Y|X) = ]] P(y:|X)
=1

(e.g. sequence labeling, non-autoregressive MT)

Autoregressive Conditioned Prediction

Y|
P(Y'X) = Hp(yi|X7y17"'ayi—l)

=1

(e.g. seq2seq model)

Source X

Target Y

[
||
1| .
HEEN ]
HEEEN
EEEER
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This concludes the foundation in sequential representation.

Most state-of-the-art advances are based on those core

RNN/LSTM ideas. But, with tens of thousands of researchers and

hackers exploring deep learning, there are many tweaks that

haven proven useful.

(aka this is where things get crazy.)




Outline

Long Short-Term Memory (LSTMs)
Bi-LSTM and ELMo
seqg2seq

seg2seq + Attention
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RNN Extensions: Bi-directional LSTMs

RNNs/LSTMs use the left-to-right context and sequentially

process data.

It you have full access to the data at testing time, why not

make use of the flow of information from right-to-left, also?




RNN Extensions: Bi-directional LSTMs
]

For brevity, let’s use the follow schematic to represent an RNN
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RNN Extensions: Bi-directional LSTMs
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RNN Extensions: Bi-directional LSTMs
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hi
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RNN Extensions: Bi-directional LSTMs
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RNN Extensions: Bi-directional LSTMs

e
BI-LSTM STRENGTHS?

* Usually performs at least as well as uni-directional RNNs/LSTMs

BI-LSTM ISSUES?

e Slower to train

* Only possible if access to full data is allowed




Type of Unconditional Prediction

Bidirectional Prediction 11
H B

| X 11

P(X) # [ Plailzs) O
i=1  (e.g. masked language mode/) RN
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RNN Extensions: Stacked LSTMs
]

Hidden layers provide an

abstraction (holds “meaning”).

Stacking hidden layers provides

increased abstractions.
Hidden layer #1

Input layer X1




RNN Extensions: Stacked LSTMs
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RNN Extensions: Stacked LSTMs

QOutput layer
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Hidden layer #1
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ELMo: Stacked Bi-directional LSTMs

General ldea:

Goal is to get highly rich, contextualized embeddings (word tokens)

Use both directions of context (bi-directional), with increasing

abstractions (stacked)

Linearly combine all abstract representations (hidden layers) and

optimize w.r.t. a particular task (e.g., sentiment classification)




ELMo: Stacked Bi-directional LSTMs

Forward Language Model Backward Language Model

S B B B O & &

LSTM B ® @

Layer #1 w w w

Embedding [TT1) T -

Illustration: http://jalammar.github.io/illustrated-bert/



http://jalammar.github.io/illustrated-bert/

Embedding of “stick” in “Let’s stick to” - Step #2

1- Concatenate hidden layers
[ B B

N [ T 71
EEEEEEEE

2- Multiply each vector by
a weight based on the task

I < 52
R x s

BN X So

3- Sum the (now weighted)
vectors

= [ B ] = =

ELMo embedding of “stick” for this task in this context

Illustration: http://jalammar.github.io/illustrated-bert/



http://jalammar.github.io/illustrated-bert/

ELMo: Stacked Bi-directional LSTMs

INCREASE
PREVIOUS SOTA Our ELMo + (ABSOLUTE/

BASELINE
BASELINE BASELIN RELATIVE)

Liu et al. (2017) 84.4 || 81.1 85.8 4.7124.9%
Chen et al. (2017) 88.6 || 88.0 88.7+0.17 0.7/5.8%

He et al. (2017) 81.7 || 814 84.6 3.2/17.2%
Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
Peters et al. (2017) 91.93 +0.19 || 90.15 90222 +0.10 2.06/21%
McCann et al. (2017) 33.7 ||.51:4 54.7 + 0.5 3.3/6.8%

Deep contextualized word representations. Peters et al. NAACL 2018.



https://arxiv.org/pdf/1802.05365.pdf

ELMo: Stacked Bi-directional LSTMs

Model F, Model Acc.

WordNet 1st Sense Baseline | 65.9 Collobert et al. (2011) | 97.3
Raganato et al. (2017a) 69.9 Ma and Hovy (2016) | 97.6
Iacobacci et al. (2016) 70.1 Ling et al. (2015) 97.8
CoVe, First Layer 59.4 CoVe, First Layer 93.3
CoVe, Second Layer 64.7 CoVe, Second Layer 02.8
bilLM, First layer 67.4 bilLM, First Layer 97.3
biLM, Second layer 69.0 biLM, Second Layer | 96.8

Table 5: All-words fine grained WSD F,. For CoVe Table 6: Test set POS tagging accuracies for PTB. For
and the biLM, we report scores for both the first and CoVe and the biLLM, we report scores for both the first
second layer biLSTMs. and second layer biLSTMs.

The higher layer seems to learn semantics while the lower layer probably

captured syntactic features

Deep contextualized word representations. Peters et al. NAACL 2018.



https://arxiv.org/pdf/1802.05365.pdf

ELMo: Stacked Bi-directional LSTMs
]

« ELMo yielded incredibly good contextualized embeddings, which yielded

SOTA results when applied to many NLP tasks.

» Main ELMo takeaway: given enough training data, having tons of explicit
connections between your vectors is useful

(system can determine how to best use context)

ELMo Slides: https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018



https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018

» Language Modelling may help us for other tasks

* LSTMs do a great job of capturing “meaning”, which can be
used for almost every task

* Given a sequence of N words, we can produce 1 output

* Given a sequence of N words, we can produce N outputs




» Language Modelling may help us for other tasks

* LSTMs do a great job of capturing “meaning”, which can be
used for almost every task

* Given a sequence of N words, we can produce 1 output

* Given a sequence of N words, we can produce N outputs

* What if we wish to have M outputs?




We want to produce a variable-length output

(e.g., n = m predictions)

nank you for visiting! Kujeme za navstevul




Outline

Long Short-Term Memory (LSTMs)
Bi-LSTM and ELMo
seqg2seq

seg2seq + Attention
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Sequence-to-Sequence (seg2seq)
|

If our input is a sentence in Language A, and we wish to translate it to
Language B, it is clearly sub-optimal to translate word by word (like our

current models are suited to do).

Instead, let a sequence of tokens be the unit that we ultimately wish to

work with (a sequence of length N may emit a sequences of length M)

seqg2seq models are comprised of 2 RNNs: 1 encoder, 1 decoder




Sequence-to-Sequence (seg2seq)
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Sequence-to-Sequence (seg2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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Sequence-to-Sequence (seg2seq)
|

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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Sequence-to-Sequence (seg2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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Sequence-to-Sequence (seg2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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Sequence-to-Sequence (seg2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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Sequence-to-Sequence (seg2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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Sequence-to-Sequence (seg2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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Sequence-to-Sequence (seg2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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Sequence-to-Sequence (seg2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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Sequence-to-Sequence (seg2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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Sequence-to-Sequence (seg2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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Sequence-to-Sequence (seg2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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Sequence-to-Sequence (seg2seq)

The final hidden state of the encoder RNN
is the initial state of the decoder RNN
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Sequence-to-Sequence (seg2seq)
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Sequence-to-Sequence (seg2seq)

Training occurs like RNNs typically do; the
loss (from the decoder outputs) is calculated,

<>

=

<)

w
<
(@)

and we update weights all the way to the
beginning (encoder)

1

w

¥

=) (00O0O00) =
\ 4
0 wap (OO000)s =P &

@)
Hidden layer 8 _}

@)

©

=P (00000) =, =p
\ 4
\ 4
=P (O0000) 5 =P
\ 4
=P (O0000) > =P =
\ 4
=P (00000)ss =P

=P (000003
=P (00000 3

T

Inputlayer  The  brown dog

I = (Q0000) S5 =P

chien brun

N\
0p)
V
O
O
C
=
C

ENCODER RNN DECODER RNN




Sequence-to-Sequence (seg2seq)
|

Testing generates decoder outputs one word
at a time, until we generate a <S> token.
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Sequence-to-Sequence (seg2seq)
|

See any issues with this traditional seq2seq paradigm?




Sequence-to-Sequence (seg2seq)
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Sequence-to-Sequence (seg2seq)

It's crazy that the entire “meaning” of the 15t sequence
is expected to be packed into this one embedding,
and that the encoder then never interacts w/ the
decoder again. Hands free.
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Sequence-to-Sequence (seg2seq)
|

Instead, what it the decoder, at each step, pays attention to

a distribution of all of the encoder’s hidden states?




Sequence-to-Sequence (seg2seq)
|

Instead, what it the decoder, at each step, pays attention to

a distribution of all of the encoder’s hidden states?

Intuition: when we (humans) translate a sentence, we don't just

consume the original sentence, reflect on the meaning of the last

word, then regurgitate in a new language; we continuously think

back at the original sentence while focusing on different parts.




Attention

The concept of attention within cognitive neuroscience and

psychology dates back to the 1800s. [William James, 1890].

Nadaray-Watson kernel regression proposed in 1964. It locally

weighted its predictions.




segZseq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?
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segZseq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!
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segZseq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

e1 1.5

*

(elelelele)

h)‘\

Separate FFNN

Hidden layer

—

h3
8
Q
>
©

hy
®)
O
O
S
T

ha
O
@)
O
6
T

Inputlayer  The  brown dog

ENCODER RNN DECODER RNN




segZseq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?
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segZseq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!
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segZseq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!
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segZseq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

Attention (raw scores)
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Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s current hidden state (our current representation of meaning)
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segZseq + Attention

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

A: Let's base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!
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segZseq + Attention
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by its a} attention weights to create a
context vector c?
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segZseq + Attention

REMEMBER: each attention weight alj is based on the decoder’s current hidden state, too.
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segZseq + Attention

REMEMBER: each attention weight alj is based on the decoder’s current hidden state, too.
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segZseq + Attention

REMEMBER: each attention weight alj is based on the decoder’s current hidden state, too.
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segZseq + Attention

REMEMBER: each attention weight alj is based on the decoder’s current hidden state, too.
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segZseq + Attention

REMEMBER: each attention weight alj is based on the decoder’s current hidden state, too.
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For convenience, here's the Attention calculation summarized on 1 slide

!

m
Attention output g = agt)sl 1 agt)s2 : Rl a,(,t,).s‘m = Z G,E.t)-*'k
" ”n k=1
source context for decoder step t

(weighted

sum)

| | exp(score(hy, s;
Attention weights ai,t) E—— d tSi)) ,
i=1 exp(score(hy, s;))

E=1.1m
|

e “attention weight for source token k at decoder step t”
(softmax)

Attention scores score(he, si),k=1..m
!

“How relevant is source token k for target step t?”

Attention input $1s52s s Sm h;
all encoder states one decoder state

Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html




For convenience, here's the Attention calculation summarized on 1 slide

The Attention mechanism that produces

scores doesn’t have to be a FFNN like |

illustrated. It can be any function you wish.

score(hs, s ), k=1..m

Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



score(hg, si)
O

!
[A“e”“°”] Popular Attention Scoring functions:

function

Dot-product Bilinear Multi-Layer Perceptron

h{ L
t h! Wy
5o x [3f 5, oD x [ w | x[¢] s« x tanh || Wy | X o)

— |

score(h, sg) = hi s,  score(hg, si) = hi Ws, score(hg, si) = w, - tanh(W, [he, si])

Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html



seg2seq + Attention

Attention:

* greatly improves segZ2seq results

* allows us to visualize the
contribution each encoding word

gave for each decoder’s word

Image source: Fig 3 in Bahdanau et al., 2015
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https://arxiv.org/pdf/1409.0473.pdf

Takeaway:

Having a separate encoder and decoder
allows for n = m length predictions.

Attention is powerful; allows us to
conditionally weight our focus



https://arxiv.org/pdf/1409.0473.pdf

Constituency Parsing

Input: dogs chase cats

Output: S
/\
NP VP
| i
dogs chase NP
|
cats

or a flattened representation

(S (NP dogs )np (VP chase (NP cats )np )ve )s




Constituency Parsing

Input: | shot an elephant in my pajamas

Output: NP VP NP

™

Pronoun Verb Pronoun

|

shot Det Nominal I Verb NP in my pajamas

o TN

an Nominal PP shot Det Nominal

.

Noun in my pajamas an  Noun

elephant elephant

1T kWY  Two parse trees for an ambiguous sentence. The parse on the left corresponds to the humorous
reading in which the elephant is in the pajamas, the parse on the right corresponds to the reading in which

Captam Spauldmg did the shootmg in his R https://web.stanford.edu/~jurafsky/slp3/13.pdf




Chinese
Shen et al. (2018) 91.8 86.4
Fried and Klein (2018) 92.2 -
Teng and Zhang (2018) : : 924
Vaswani et al. (2017) 92.7
Dyer et al. (2016) 93.3
Kuncoro et al. (2017) 93.6
Charniak et al. (2016) 93.8
Liu and Zhang (2017b) £ : 91.7
Liu and Zhang (2017a) 94.2
Suzuki et al. (2018) 94.32
Takase et al. (2018) 94.47
Fried et al. (2017) - - 94.66
Kitaev and Klein (2018) | 94.85 | 95.40 | 95.13
Kitaev et al. (2018) 95.51 | 96.03 | 95.77
Zhou and Zhao (2019) | 95.70 | 95.98 | 95.84
(BERT)
Zhou and Zhao (2019) | 96.21 | 96.46 | 96.33
(XLNet)
Our work 96.24 | 96.53 | 96.38 | 91.85 | 93.45

Table 3: Constituency Parsing on PTB & CTB test sets.

https://aclanthology.org/2020.findings-emnlp.65.pdf




Image Captioning

Input: image

Output: generated text

rose et e

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor.

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)




Image Captioning

Input: image

Output: generated text

A little girl sitting on a bed with
a teddy bear.

A stop sign is on a road with a
mountain in the background.

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)



Image Captioning

o oo NS

A large white bird standing in a forest. A woman holding a clock in her hand.

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)



Image Captioning

A woman is sitting at a table A person is standing on a beach
with a large pizza. with a surfboard.

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)



SUMMARY

* LSTMs yielded state-of-the-art results on most NLP tasks (2014-2018)

* segZseq+Attention was an even more revolutionary idea (Google
Translate used it)

» Attention allows us to place appropriate weight to the encoder’s
hidden states

* But, LSTMs require us to iteratively scan each word and wait until we're
at the end before we can do anything







