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Stayin' alive was no jive [...] but it was just a dream for the
teen, who was a fiend. Started [hustlin’ at] 16, and runnin' up

in [LSTM gates].

-- Raekwon of Wu-Tang (1994)



ANNOUNCEMENTS

« HW2 coming very soon. Due in 2 weeks.

« Research Proposals are due in 9 days, Sept 30.

 Office Hours:
* This week, my OH will be pushed back 30 min: 3:30pm — 5:30pm

« Please reserve your coding guestions for the TFs and/or EdStem, as | hold

office hours solo, and debugging code can easily bottleneck the queue.



RECAP: L4

Distributed Representations: dense vectors (aka embeddings) that aim to

convey the meaning of tokens:

 "word embeddings” refer to when you have type-based

representations

« “contextualized embeddings” refer to when you have token-based

representations



RECAP: L4

An auto-regressive LM is one that only has access to the previous tokens
(and the outputs become the inputs).

Evaluation: Perplexity

A masked LM can peak ahead, too. It “masks” a word within the context

(i.e., center word).

Evaluation: downstream NLP tasks that uses the learned embeddings.

Both of these can produce useful word embeddings.



RECAP: LS

* RNNs help capture more context
while avoiding sparsity, storage,

and compute issues!

* The hidden layer is what we care

about. It represents the word’s
“meaning”.

Output layer

Hidden layer

Input layer




Outline
e Recurrent Neural Nets (RNNs)
mmm Long Short-Term Memory (LSTMs)
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RNN
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RNN
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RNN

CE(y"9) = = ) yilog(h)

Training Process wev

Error

Output layer During training, regardless of our output predictions,

we feed in the correct inputs

Hidden layer

Input layer




RNN
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RNN

— o CE(yL9') =~ ) ywlog(hs)
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Our total loss is simply the average loss across all T time steps




RNN Training Details

To update our weights (e.g. V), we calculate the gradient

of our loss w.r.t. the repeated weight matrix (e.g., g—'L/ .

Using the chain rule, we trace the derivative all the
way back to the beginning, while summing the results.
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RNN

Training Details

* This backpropagation through time (BPTT) process is expensive

* Instead of updating after every timestep, we tend to do so

every T steps (e.g., every sentence or paragraph)

* This isn't equivalent to using only a window size T

(a la n-grams) because we still have ‘infinite memory’
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RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from y

Continue until we generate <EOS> symbol.

21



RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from y

Continue until we generate <EOS> symbol.

"Sorry”
Output layer 0000

Hidden layer Q0000

Input layer (0000 ]

<START>



RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from y

Continue until we generate <EOS> symbol.

"Sorry” Harry
Output layer 000 Q000
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Input layer [““ ] [““ ]
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<START> "Sorry”
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RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from y

Continue until we generate <EOS> symbol.

“SOI'I'y” Harry shouted,
Output layer 000 Q000 0000
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RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from y

Continue until we generate <EOS> symbol.

“Sorry” Harry shouted, panicking
Output layer 0000 Q000 Q000 0000

T TR S Y T

Hidden layer ~ [OOOO0)] == (0OO0O 00000 00000
w4 w4 w4 w4
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<START> “Sorry” Harry shouted,




RNN: Generation

NOTE: the same input (e.g., “Harry”) can easily yield different outputs,

depending on the context (unlike FFNNs and n-grams).
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RNN: Generation

When trained on Harry Potter text, it generates:

“Sorry,” Harry shouted, panicking—*“I'll leave those brooms in London, are
they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the

common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6
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RNN: Generation When trained on recipes

Title: CHOCOLATE RANCH BARBECUE
Categories: Game, Casseroles, Cookies, Cookies
Yield: 6 Servings

2 tb Parmesan cheese —— chopped
1 ¢ Coconut milk
3 Eggs, beaten

Place each pasta over layers of lumps. Shape mixture into the moderate oven and simmer
until firm. Serve hot in bodied fresh, mustard, orange and cheese.

Combine the cheese and salt together the dough in a large skillet; add the ingredients
and stir in the chocolate and pepper.

Source: https://gist.github.com/nylki/1efbaa36635956d35bcc
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RNNs: Overview

RNN STRENGTHS?

« Can handle infinite-length sequences (not just a fixed-window)

* Has a “memory” of the context (thanks to the hidden layer's recurrent loop)

« Same weights used for all inputs, so positionality isn't wonky/overwritten (like FFNN)

RNN ISSUES?

e Slow to train (BPTT)

* Due to "infinite sequence”, gradients can easily vanish or explode

* Has trouble actually making use of long-range context

29
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RNNs: Vanishing and Exploding Gradients
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RNNs: Vanishing and Exploding Gradients
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RNNs: Vanishing and Exploding Gradients
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RNNs: Vanishing and Exploding Gradients

aL*
vl

oLt ov3 ov?

av3 av? vl

This long path makes it easy
for the gradients to become
really small or large.

If small, the far-away context

will be “"forgotten.”

If large, recency bias and no
context.




Activation Functions

Sigmoid




Derivatives of Activation Functions

——tanh(z) L
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Chain Reactions

P explode
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h(i) ,

Figure 3: (left) The function computed by the RNN at each time step,

Ta n h activations fO ra | | (right) the function computed by the network.




Lipschitz

A real-valued function f: R 2R is Lipschitz continuous if

3K s.t. Vg, x,, |f(x1) — FO)| < Klxy — x5

Re-worded, if x; # x:

fC) = fCDN _

|1 — x5




Gradients

We assert our Neural Net's objective function 7 is well-behaved and

Lipschitz continuous w/ a constant L

If(x) —f)| < Llx —y|

We update our parameters by g

= |f(x) —flx—ng)| < Lnlg|




This means, we will never observe a

change by more than Ln|g|

= |f(x) —flx—ng)| < Lnlg|




Gradients

We update our parametersbyng = |f(x) — f(x —ng)| < Lnlgl|

PRO:

e Limits the extent to which things can go wrong if we move in the wrong
direction

CONS:

* Limits the speed of making progress

* Gradients may still become quite large and the optimizer may not
converge

How can we limit the gradients from being so large?




Exploding Gradients

Without clipping With clipping

Algorithm 1 Pseudo-code for norm clipping
&+ 95
if ||g|| > threshold then
S threshold A
€< el 8
\/ \/ end if
’ b " b

Source: https://www.deeplearningbook.org/contents/rnn.html Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanul3.pdfs



https://www.deeplearningbook.org/contents/rnn.html
http://proceedings.mlr.press/v28/pascanu13.pdf

G radient Cl | pp| N g Algorithm 1 Pseudo-code for norm clipping

if ||g|| > threshold then
A threshold »
8 g 8

end if

« Ensures the norm of the gradient never exceeds the threshold T

« Only adjusts the magnitude of each gradient, not the direction (good).

« Helps w/ numerical stability of training; no general improvement in

performance




Outline
e Recurrent Neural Nets (RNNs)
mmm Long Short-Term Memory (LSTMs)

mmm Bi-LSTM and ELMo

45



Outline
e Recurrent Neural Nets (RNNs)
mmm Long Short-Term Memory (LSTMs)

mmm Bi-LSTM and ELMo

46



LSTM

A type of RNN that is designed to better handle long-range

dependencies

* In "vanilla” RNNs, the hidden state is perpetually being rewritten

* |n addition to a traditional hidden state h, let's have a dedicated
memory cell c for long-term events. More power to relay

sequence info.



LSTM

At each each time step t, we have a hidden state ht and cell state ct:
 Both are vectors of length n
* cell state ¢t stores long-term info

* At each time step t, the LSTM erases, writes, and reads information from the
cell ct

* ¢t never undergoes a nonlinear activation though, just —and +

 + of two things does not modify the gradient; simply adds the gradients



LSTM

C and H relay long- and short-term memory to the hidden layer,
respectively. Inside the hidden layer, there are many weights.

Output layer 000 000 00O

T Cc1l T C2 T
Hidden layer ooc%oo ? oo%oo ? OOC}OO
Input layer [“.. ] [“.. ] [‘.‘. ]

X1 X2 X2
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LSTM

Ct+1

Neural Network Pointwise Vector
Diagram: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Layer Operation Transfer Concatenate Co%
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LSTM
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Neural Network Pointwise Vector
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LSTM

Ht+1

a nonlinear weighted version of the
long-term memory becomes our
short-term memory

Neural Network Pointwise Vector
Diagram: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Layer Operation Transfer COnCRSanE Cony



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM

memory is written, erased, and
read by three gates — which are
influenced by x and h

Ht I Ht+1

a nonlinear weighted version of the
long-term memory becomes our
short-term memory

O—>>->—<

Neural Network Pointwise Vector
Diagram: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ Layer Operation Transfer Concatenate Cony



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Forget Gate fo =0 (Wy-[ht—1,24] + by)

Imagine the cell state currently has values related to a
previous topic. Convo has shifted. .



|npUt Gate ft e U(Wf°[ht—17$t] + bf)

it =0 (Wi'[ht_l,ﬂl't] + b7)
ét — tanh(WC'[ht_1,$t] + bc>

Decides which values to update (by scaling each of
the new, incoming info). .



Ce” State ft — U(Wf°[ht—laxt] -+ bf)

it =0 (Wi'[ht_l,ﬂ?t] + b1)

C~'t = tanh(We¢-[hi—1, 2] + bo)

C .=
£ Ct:ft*ct—l —I—’Lt*Ct

The cell state forgets some info, then it's
simultaneously updated by us adding to it. .



Hidden State ft = (Wf°[ht_1,513t] + bf)

hy it =0 (Wi-lhi—1,2¢] + b;)
ét = tanh(WC-[ht_l,xt] + bc)

Ci = fy % Ci—1 + iy * C;

o =0 (W, [hi—1,2¢] + bo)
hy = o * tanh (C})

Decide what our new hidden representation will be. Based on:
- filtered version of the cell state, and
- weighted version of recurrent, hidden layer .



LSTM

It's still possible for LSTMs to suffer from vanishing/exploding

gradients, but it's way less likely than with vanilla RNNs:

* It RNNs wish to preserve info over long contexts, it must delicately

find a recurrent weight matrix W;, that isn‘t too large or small

* However, LSTMs have 3 separate mechanism that adjust the flow of

information (e.g., forget gate, if turned off, will preserve all info)
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Cell that turns on inside quotes:

operative time to
“turn on”

A large portion of cells are not easily interpretable. Here is a typical example:

ter fileld'sWsitring repres@ntation firom Wiser-space
ack_string(welid *®bufp, size_t HMremain, silze_t Lem)




Cell that turns on inside comments and quotes:

e ——

The cell learns an

operative time to
“turn on”.

Cell that is sensitive to the depth of an expression:

#ifdef CONFIG_AUDITSYSCALL

itatic inline int audit_match_class_bits(int class, u32 *"mask)

€ AUDIT _BITNASK SIZE; 1%%)




LSTM

LSTM STRENGTHS?

 Almost always outperforms vanilla RNNs

» Captures long-range dependencies shockingly well

LSTM ISSUES?

« Has more weights to learn than vanilla RNNs; thus,

* Requires a moderate amount of training data (otherwise, vanilla
RNNs are better)

* Can still suffer from vanishing/exploding gradients
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Sequential Modelling

IMPORTANT

If your goal isn't to predict the next item in a sequence, and you rather

do some other classification or regression task using the sequence,

then you can:

* Train an aforementioned model (e.g., LSTM) as a language model

 Use the hidden layers that correspond to each item in your

seqgquence
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Sequential Modelling
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Sequential Modelling

Many-to-1 classification

Sentiment score
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Sequential Modelling
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This concludes the foundation in sequential representation.

Most state-of-the-art advances are based on those core

RNN/LSTM ideas. But, with tens of thousands of researchers and

hackers exploring deep learning, there are many tweaks that

haven proven useful.

(This is where things get crazy.)




Outline
e Recurrent Neural Nets (RNNs)
mmm Long Short-Term Memory (LSTMs)

mmm Bi-LSTM and ELMo
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RNN Extensions: Bi-directional LSTMs

RNNs/LSTMs use the left-to-right context and sequentially

process data.

It you have full access to the data at testing time, why not

make use of the flow of information from right-to-left, also?




RNN Extensions: Bi-directional LSTMs
]

For brevity, let’s use the follow schematic to represent an RNN
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RNN Extensions: Bi-directional LSTMs
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RNN Extensions: Bi-directional LSTMs
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RNN Extensions: Bi-directional LSTMs

e
BI-LSTM STRENGTHS?

* Usually performs at least as well as uni-directional RNNs/LSTMs

BI-LSTM ISSUES?

e Slower to train

* Only possible if access to full data is allowed




RNN Extensions: Stacked LSTMs
]

Hidden layers provide an

abstraction (holds “meaning”).

Stacking hidden layers provides

increased abstractions.
Hidden layer #1

Input layer X1




RNN Extensions: Stacked LSTMs
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RNN Extensions: Stacked LSTMs

QOutput layer

Hidden layer #2
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Hidden layers provide an

abstraction (holds “meaning”).

Stacking hidden layers provides

increased abstractions.




ELMo: Stacked Bi-directional LSTMs

General ldea:

Goal is to get highly rich embeddings for each word (unique type)

Use both directions of context (bi-directional), with increasing

abstractions (stacked)

Linearly combine all abstract representations (hidden layers) and

optimize w.r.t. a particular task (e.g., sentiment classification)

ELMo Slides: https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018



https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018

ELMo: Stacked Bi-directional LSTMs

Forward Language Model Backward Language Model

S B B B O & &

LSTM B ® @

Layer #1 w w w

Embedding [TT1) T -

Illustration: http://jalammar.github.io/illustrated-bert/



http://jalammar.github.io/illustrated-bert/

Embedding of “stick” in “Let’s stick to” - Step #2

1- Concatenate hidden layers
[ B B

N [ T 71
EEEEEEEE

2- Multiply each vector by
a weight based on the task

I < 52
R x s

BN X So

3- Sum the (now weighted)
vectors

= [ B ] = =

ELMo embedding of “stick” for this task in this context

Illustration: http://jalammar.github.io/illustrated-bert/



http://jalammar.github.io/illustrated-bert/

ELMo: Stacked Bi-directional LSTMs

INCREASE
PREVIOUS SOTA Our ELMo + (ABSOLUTE/

BASELINE
BASELINE BASELIN RELATIVE)

Liu et al. (2017) 84.4 || 81.1 85.8 4.7124.9%
Chen et al. (2017) 88.6 || 88.0 88.7+0.17 0.7/5.8%

He et al. (2017) 81.7 || 814 84.6 3.2/17.2%
Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
Peters et al. (2017) 91.93 +0.19 || 90.15 90222 +0.10 2.06/21%
McCann et al. (2017) 33.7 ||.51:4 54.7 + 0.5 3.3/6.8%

Deep contextualized word representations. Peters et al. NAACL 2018.



https://arxiv.org/pdf/1802.05365.pdf

ELMo: Stacked Bi-directional LSTMs
]

« ELMo yielded incredibly good contextualized embeddings, which yielded

SOTA results when applied to many NLP tasks.

» Main ELMo takeaway: given enough training data, having tons of explicit
connections between your vectors is useful

(system can determine how to best use context)

ELMo Slides: https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018



https://www.slideshare.net/shuntaroy/a-review-of-deep-contextualized-word-representations-peters-2018

SUMMARY

» Distributed Representations can be:

*  Type-based ("word embeddings”)

» Token-based ("contextualized representations/embeddings”)
« Type-based models include Bengio’s 2003 and word2vec 2013

« Token-based models include RNNs/LSTMs, which:

» demonstrated profound results in 2015 onward.

* it can be used for essentially any NLP task.
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