
Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

Contextualized, Token-based Representations

Lecture 5: Recurrent Neural Networks

Bonus: The Last Emperor (1998) remembers, too. https://www.youtube.com/watch?v=GPPfCS7qv-8

https://www.youtube.com/watch?v=GPPfCS7qv-8
https://www.youtube.com/watch?v=GPPfCS7qv-8

3

ANNOUNCEMENTS
• Keep an eye on the HW1 Errata, posted on Ed. HW1 is due in 1 week!

• Research Proposals are due in 2 weeks, Sept 30. Start skimming papers and

talking with teammates.

• Office Hours:

• if Zoom room is empty, the TF is likely in a break-out room helping a student

1-on-1 w/ their code.

• Please reserve your coding questions for the TFs and/or EdStem, as I hold

office hours solo, and debugging code can easily bottleneck the queue.

4

QUIZ 1

TFIDF = 𝑓𝑤! * 𝑙𝑜𝑔 (
docs in corpus

docs containing!!)

5

QUIZ 1

6

QUIZ 1

RECAP: L4

Distributed Representations: dense vectors (aka embeddings) that aim to

convey the meaning of tokens*

A “word embeddings” are distributed representations, and they

specifically refer to when you have type-based representations. i.e., a single

representation for each unique word type. All “banks” would have the

same learned vector.

* the token is almost always a word, but technically could be a character or sub-words 7

RECAP: L4
An auto-regressive LM is one that only has access to the previous tokens.

Evaluation: Perplexity

A masked LM can peak ahead, too. It “masks” a word within the context

(i.e., center word).

Evaluation: downstream NLP tasks that uses the learned embeddings.

8

Both of these can produce useful word embeddings.

RECAP: L4 These are the learned word embeddings that we

want to extract and use

9

RECAP: L4

word2vec was revolutionary and yields great word embeddings

10

RECAP: L4
1. More context while avoiding sparsity, storage, and compute issues

2. No semantic information conveyed by counts (e.g., vehicle vs car)

3. Cannot leverage non-consecutive patterns

4. Cannot capture combinatorial signals (i.e., non-linear prediction)

Dr. Cornell West ____Dr. West ____

Occurred 25 times Occurred 3 times

P(Chef cooked food) P(Customer cooked food)

P(Customer ate food)P(Chef ate food)

New goals!

low

lowhigh

high

11

Word Embeddings (cont.)

Recurrent Neural Nets (RNNs)

Outline

Word Embeddings (cont.)

Recurrent Neural Nets (RNNs)

Outline

14

word2vec training

Input words {wt-2, wt-1 wt+1, wt+2} yield the

same prediction regardless of the ordering.

Hence, CBOW

15

word2vec training
• Words that appear in the same contexts are

forced to gravitate toward having the same

embeddings as one another (especially if

close to each other)

• Imagine two words, w1 and w2, that never

appear together, but they each, individually

have the exact same contexts with other

words. w1 and w2 will have ~identical

embeddings!

16

word2vec training

Disclaimer: As a heads-up, no models create

embeddings such that the dimensions actually

correspond to linguistic or real-world phenomenon.

The embeddings are often really great and useful, but

no single embedding (in the absence of others) is

interpretable.

17

word2vec training

millions of books word2vec word embeddings

aardvark

apple

before

zoo

18

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

“The food was delicious. Amazing!” 4.8/5

18

19

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

“The food was delicious. Amazing!” 4.8/5

the

food

was

delicious

amazing

+

+

+

+

=

average embedding

Feed-forward
Neural Net

average embedding

4.8/5

20

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

“Waste of money. Tasteless!” 2.4/5

waste

of

money

tasteless

+

+

+

=

average embedding

Feed-forward
Neural Net

average embedding

2.4/5

21

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

“Daaang. What?! Supa Lit” 4.9/5

daaang

what

supa

lit

+

+

+

=

average embedding

Strengths and weaknesses of
word embeddings (type-based)?

22

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

daaang

what

supa

lit

+

+

+

=

average embedding

Strengths:

• Can create general-purpose, useful
embeddings by leveraging tons of
existing data

• Captures semantic similarity

23

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

daaang

what

supa

lit

+

+

+

=

average embedding

Issues:

• Not tailored to this dataset

• Out-of-vocabulary (OOV) words

• Limited context

• Each prediction is independent from previous

• A FFNN is a clumsy, inefficient way to handle context;
fixed context that is constantly being overwritten (no
persistent hidden state).

• Requires inputting entire context just to predict 1 word

24

word2vec Results

• SkipGram w/ Negative Sampling tends to outperform CBOW

• SkipGram w/ Negative Sampling is slower than CBOW

• Both SkipGram and CBOW are predictive, neural models that

take a type-based approach (not token-based).

• Both SkipGram and CBOW can create rich word embeddings

that capture both semantic and syntactic information.

25

Evaluation

We cheated by looking ahead, so it’s unfair to measure

perplexity against n-gram or other auto-regressive LM

Intrinsic evaluation:

• Word similarity tasks

• Word analogy tasks

Extrinsic evaluation:

• Apply to downstream tasks (e.g., Natural language inference,
entailment, question answering, information retrieval)

26

Evaluation Word Similarity (not relatedness)

Slide adapted from or inspired by Sam Bowman’s NYU NLP 2021

27

Evaluation Word Analogy

Slide adapted from or inspired by Sam Bowman’s NYU NLP 2021

Word Embeddings (cont.)

Recurrent Neural Nets (RNNs)

Outline

Outline

Word Embeddings (cont.)

Recurrent Neural Nets (RNNs)

RNNs

30

We especially need a system that:

• Has an “infinite” concept of the past, not just a fixed window

• For each new input, output the most likely next event (e.g., word)

Motivation

31

Language often has long-range dependencies:

Emily earned the top grade on the quiz! Everyone was proud of her.

Miquel earned the top grade on the quiz! Everyone was proud of him.

Motivation

32

Language often has long-range dependencies:

The trophy would not fit in the brown suitcase because it was too big.

The trophy would not fit in the brown suitcase because it was too small.

Winograd Schema Challenge: http://commonsensereasoning.org/winograd.html

http://commonsensereasoning.org/winograd.html

Motivation

33

Language is sequential in nature:

• characters form words.

• words form sentences.

• sentences form narratives/documents

NLP folks like to operate at the word level, as that's the smallest, convenient

unit of meaning.

Motivation

34

Q: What are some other types of data one might

model, that are sequential in nature?

Motivation

35

Much of our data is inherently sequential

WORLD

HUMANITY

INDIVIDUAL PEOPLE

scale examples

Natural disasters (e.g., earthquakes)

Climate change

Stock market

Viral outbreaks

Speech recognition

Machine Translation (e.g., English -> French)

Cancer treatment

Approach

36

Traditional, pre-deep learning models included HMMs and CRFs.

Image: http://www.adeveloperdiary.com/data-science/machine-learning/forward-and-backward-algorithm-in-hidden-markov-model/

IDEA: for every individual input, output a prediction

She

Example input word

𝑊

𝑈

Hidden layer

Output layer

𝑥 = 𝑥!
single word embedding

ℎ = 𝑓(𝑊𝑥 + 𝑏!)

+𝑦 = softmax 𝑈ℎ + 𝑏" ∈ ℝ #
went

RNN

IDEA: for every individual input, output a prediction

She

Example input word

𝑊

𝑈

Hidden layer

Output layer

𝑥 = 𝑥!
single word embedding

ℎ = 𝑓(𝑊𝑥 + 𝑏!)

+𝑦 = softmax 𝑈ℎ + 𝑏" ∈ ℝ #
went

Let’s use the previous hidden state, too

RNN

Elman. Finding Structure in Time. Cognitive Science (1990)

IDEA: for every individual input, output a prediction

She

Example input word

𝑊

𝑈

Hidden layer

Output layer

𝑥 = 𝑥!
single word embedding

ℎ = 𝑓(𝑊𝑥 + 𝑏!)

+𝑦 = softmax 𝑈ℎ + 𝑏" ∈ ℝ #
went

Let’s use the previous hidden state, too

RNN

IDEA: for every individual input, output a prediction

She

Example input word

𝑊

𝑈

Hidden layer

Output layer

𝑥 = 𝑥!
single word embedding

ℎ = 𝑓(𝑊𝑥 + 𝑏!)

+𝑦 = softmax 𝑈ℎ + 𝑏" ∈ ℝ #
went

Let’s use the previous hidden state, too

RNN

Input layer

Hidden layer

Output layer

𝑊

𝑈

+𝑦!

𝑥!

RNN

Input layer

Hidden layer

Output layer

𝑊

𝑈

+𝑦!

𝑊

𝑈

+𝑦"

𝑥! 𝑥"

𝑉

RNN

Input layer

Hidden layer

Output layer

𝑊

𝑈

+𝑦!

𝑊

𝑈

𝑊

𝑈

+𝑦" +𝑦$

𝑥! 𝑥" 𝑥$

𝑉 𝑉

RNN

Input layer

Hidden layer

Output layer

𝑊

𝑈

+𝑦!

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

+𝑦" +𝑦$ +𝑦%

𝑥! 𝑥" 𝑥$ 𝑥%

𝑉 𝑉 𝑉

RNN

Some people find this abstract view useful.

Input layer

Hidden layer

Output layer

𝑊

𝑈

+𝑦&

𝑥&

𝑉

The recurrent loop 𝑉 conveys that the
current hidden layer is influenced by the
hidden layer from the previous time step.

The initial hidden layer 𝒉𝟎 can be initialized
to 0s

RNN

Some people find this abstract view useful.

Input layer

Hidden layer

Output layer

𝑊

𝑈

+𝑦&

𝑥&

𝑉
The recurrent loop 𝑉 conveys that the
current hidden layer is influenced by the
hidden layer from the previous time step.

RNN

Definition: an RNN is any neural net that has a
non-linear combination of the recurrent state
(e.g., hidden layer) and the input

Some people find this abstract view useful.

Input layer

Hidden layer

Output layer

𝑊

𝑈

+𝑦&

𝑥&

𝑉
The recurrent loop 𝑉 conveys that the
current hidden layer is influenced by the
hidden layer from the previous time step.

RNN

Definition: an RNN is any neural net that has a
non-linear combination of the recurrent state
(e.g., hidden layer) and the input

NOTE: The Embedding layer for all of our NN’s
never has a non-linear activation. Why?

What exactly are we learning?

Input layer

Hidden layer

Output layer

𝑊

𝑈

+𝑦&

𝑥&

𝑉

CHALKBOARD EXERCISE: Let’s write out all weight matrices and their sizes.

RNN

Input layer

Hidden layer

Output layer

𝑊

𝑈

+𝑦!

𝑥!

Training Process

𝐶𝐸 𝑦#, -𝑦#Error

She

𝐶𝐸 𝑦$, -𝑦$ = −0
%∈'

𝑦%$ log(-𝑦%$)
RNN

Input layer

Hidden layer

Output layer

𝑊

𝑈

+𝑦!

𝑊

𝑈

+𝑦"

𝑥! 𝑥"

𝑉

Training Process

𝐶𝐸 𝑦(, -𝑦(𝐶𝐸 𝑦#, -𝑦#Error

She went

𝐶𝐸 𝑦$, -𝑦$ = −0
%∈'

𝑦%$ log(-𝑦%$)
RNN

Input layer

Hidden layer

Output layer

𝑊

𝑈

+𝑦!

𝑊

𝑈

𝑊

𝑈

+𝑦" +𝑦$

𝑥! 𝑥" 𝑥$

𝑉 𝑉

Training Process

𝐶𝐸 𝑦(, -𝑦(𝐶𝐸 𝑦), -𝑦)𝐶𝐸 𝑦#, -𝑦#Error

She went to

𝐶𝐸 𝑦$, -𝑦$ = −0
%∈'

𝑦%$ log(-𝑦%$)
RNN

Input layer

Hidden layer

Output layer

𝑊

𝑈

+𝑦!

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

+𝑦" +𝑦$ +𝑦%

𝑥! 𝑥" 𝑥$ 𝑥%

𝑉 𝑉 𝑉

Training Process

𝐶𝐸 𝑦(, -𝑦(𝐶𝐸 𝑦), -𝑦) 𝐶𝐸 𝑦*, -𝑦*𝐶𝐸 𝑦#, -𝑦#Error

She went to class

𝐶𝐸 𝑦$, -𝑦$ = −0
%∈'

𝑦%$ log(-𝑦%$)
RNN

Input layer

Hidden layer

Output layer

𝑊

𝑈

+𝑦!

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

+𝑦" +𝑦$ +𝑦%

𝑥! 𝑥" 𝑥$ 𝑥%

𝑉 𝑉 𝑉

Training Process

𝐶𝐸 𝑦(, -𝑦(𝐶𝐸 𝑦), -𝑦) 𝐶𝐸 𝑦*, -𝑦*𝐶𝐸 𝑦#, -𝑦#Error

She went to class

During training, regardless of our output predictions,
we feed in the correct inputs

𝐶𝐸 𝑦$, -𝑦$ = −0
%∈'

𝑦%$ log(-𝑦%$)
RNN

Training Process

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

She went to class

went? over? class? after?

𝐶𝐸 𝑦(, -𝑦(𝐶𝐸 𝑦), -𝑦) 𝐶𝐸 𝑦*, -𝑦*𝐶𝐸 𝑦#, -𝑦#Error

+𝑦

𝐶𝐸 𝑦$, -𝑦$ = −0
%∈'

𝑦%$ log(-𝑦%$)
RNN

Training Process

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

She went to class

went? over? class? after?

𝐶𝐸 𝑦(, -𝑦(𝐶𝐸 𝑦), -𝑦) 𝐶𝐸 𝑦*, -𝑦*𝐶𝐸 𝑦#, -𝑦#Error

+𝑦

𝐶𝐸 𝑦$, -𝑦$ = −0
%∈'

𝑦%$ log(-𝑦%$)

Our total loss is simply the average loss across all 𝑻 time steps

RNN

Training Details

Output layer

𝑈 𝑈 𝑈 𝑈𝑉 𝑉 𝑉

went? over? class? after?

𝐶𝐸 𝑦*, -𝑦*

+𝑦
Using the chain rule, we trace the derivative all the
way back to the beginning, while summing the results.

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

To update our weights (e.g. 𝑽), we calculate the gradient

of our loss w.r.t. the repeated weight matrix (e.g., 𝝏𝑳
𝝏𝑽
).

RNN

Training Details

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉$

She went to class

went? over? class?

𝐶𝐸 𝑦*, -𝑦*

+𝑦

To update our weights (e.g. 𝑽), we calculate the gradient

of our loss w.r.t. the repeated weight matrix (e.g., 𝝏𝑳
𝝏𝑽
).

𝝏𝑳
𝝏𝑽

Using the chain rule, we trace the derivative all the
way back to the beginning, while summing the results.

RNN

Training Details

Output layer

𝑈 𝑈 𝑈 𝑈𝑉 𝑉$

went? over? class?

𝐶𝐸 𝑦*, -𝑦*

+𝑦

𝝏𝑳
𝝏𝑽

𝑉"

Using the chain rule, we trace the derivative all the
way back to the beginning, while summing the results.

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

To update our weights (e.g. 𝑽), we calculate the gradient

of our loss w.r.t. the repeated weight matrix (e.g., 𝝏𝑳
𝝏𝑽
).

RNN

RNN Training Details

Output layer

𝑈 𝑈 𝑈 𝑈
𝑉$

went? over? class?

𝐶𝐸 𝑦*, -𝑦*

+𝑦
Using the chain rule, we trace the derivative all the
way back to the beginning, while summing the results.

𝝏𝑳
𝝏𝑽

𝑉"𝑉!

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

To update our weights (e.g. 𝑽), we calculate the gradient

of our loss w.r.t. the repeated weight matrix (e.g., 𝝏𝑳
𝝏𝑽
).

Training Details

• This backpropagation through time (BPTT) process is expensive

• Instead of updating after every timestep, we tend to do so

every 𝑇 steps (e.g., every sentence or paragraph)

• This isn’t equivalent to using only a window size 𝑇

(a la n-grams) because we still have ‘infinite memory’

RNN

We can generate the most likely next event (e.g., word) by sampling from :𝒚

Continue until we generate <EOS> symbol.

RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from :𝒚

Continue until we generate <EOS> symbol.

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑥!
<START>

“Sorry”

RNN: Generation

RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from :𝒚

Continue until we generate <EOS> symbol.

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑥! 𝑥"

𝑉

<START> “Sorry”

“Sorry” Harry

RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from :𝒚

Continue until we generate <EOS> symbol.

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥! 𝑥" 𝑥$

𝑉 𝑉

<START> “Sorry” Harry

“Sorry” Harry shouted,

RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from :𝒚

Continue until we generate <EOS> symbol.

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥! 𝑥" 𝑥$ 𝑥%

𝑉 𝑉 𝑉

<START> “Sorry” Harry shouted,

“Sorry” Harry shouted, panicking

RNN: Generation

NOTE: the same input (e.g., “Harry”) can easily yield different outputs,
depending on the context (unlike FFNNs and n-grams).

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥! 𝑥" 𝑥$ 𝑥%

𝑉 𝑉 𝑉

<START> “Sorry” Harry shouted,

“Sorry” Harry shouted, panicking

RNN: Generation

When trained on Harry Potter text, it generates:

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

RNN: Generation When trained on recipes

Source: https://gist.github.com/nylki/1efbaa36635956d35bcc

https://gist.github.com/nylki/1efbaa36635956d35bcc

RNNs: Overview

RNN ISSUES?

RNN STRENGTHS?

• Can handle infinite-length sequences (not just a fixed-window)

• Has a “memory” of the context (thanks to the hidden layer’s recurrent loop)

• Same weights used for all inputs, so word order isn’t wonky (like FFNN)

• Slow to train (BPTT)

• Due to ”infinite sequence”, gradients can easily vanish or explode

• Has trouble actually making use of long-range context

RNNs: Overview

RNN ISSUES?

RNN STRENGTHS?

• Can handle infinite-length sequences (not just a fixed-window)

• Has a “memory” of the context (thanks to the hidden layer’s recurrent loop)

• Same weights used for all inputs, so word order isn’t wonky (like FFNN)

• Slow to train (BPTT)

• Due to ”infinite sequence”, gradients can easily vanish or explode

• Has trouble actually making use of long-range context

RNNs: Vanishing and Exploding Gradients

𝑈 𝑈 𝑈 𝑈
𝑉$

𝐶𝐸 𝑦*, -𝑦*

+𝑦

𝝏𝑳𝟒

𝝏𝑽𝟏

𝑉"𝑉!

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= ?

RNNs: Vanishing and Exploding Gradients

𝑈 𝑈 𝑈 𝑈
𝑉$

𝐶𝐸 𝑦*, -𝑦*

+𝑦

𝝏𝑳𝟒

𝝏𝑽𝟏

𝑉"𝑉!

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= 𝝏𝑳𝟒

𝝏𝑽𝟑

RNNs: Vanishing and Exploding Gradients

𝑈 𝑈 𝑈 𝑈
𝑉$

𝐶𝐸 𝑦*, -𝑦*

+𝑦

𝝏𝑳𝟒

𝝏𝑽𝟏

𝑉"𝑉!

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= 𝝏𝑳𝟒

𝝏𝑽𝟑
𝝏𝑽𝟑

𝝏𝑽𝟐

RNNs: Vanishing and Exploding Gradients

𝑈 𝑈 𝑈 𝑈
𝑉$

𝐶𝐸 𝑦*, -𝑦*

+𝑦

𝝏𝑳𝟒

𝝏𝑽𝟏

𝑉"𝑉!

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= 𝝏𝑳𝟒

𝝏𝑽𝟑
𝝏𝑽𝟑

𝝏𝑽𝟐
𝝏𝑽𝟐

𝝏𝑽𝟏

RNNs: Vanishing and Exploding Gradients

𝑈 𝑈 𝑈 𝑈
𝑉$

𝐶𝐸 𝑦*, -𝑦*

+𝑦

𝝏𝑳𝟒

𝝏𝑽𝟏

𝑉"𝑉!

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= 𝝏𝑳𝟒

𝝏𝑽𝟑
𝝏𝑽𝟑

𝝏𝑽𝟐
𝝏𝑽𝟐

𝝏𝑽𝟏

This long path makes it easy
for the gradients to become
really small or large.

If small, the far-away context
will be ”forgotten.”

If large, recency bias and no
context.

Exploding Gradients

Source: https://www.deeplearningbook.org/contents/rnn.html Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

https://www.deeplearningbook.org/contents/rnn.html
http://proceedings.mlr.press/v28/pascanu13.pdf

BACKUP

77

78

SimLex-999’s Abstract

SimLex-999: Evaluating Semantic Models with (Genuine) Similarity Estimation. Hill et al. (2014)

We present SimLex-999, a gold standard resource for evaluating distributional
semantic models that improves on existing resources in several important ways. First,
in contrast to gold standards such as WordSim-353 and MEN, it explicitly quantifies
similarity rather than association or relatedness, so that pairs of entities that are
associated but not actually similar [Freud, psychology] have a low rating. We show
that, via this focus on similarity, SimLex-999 incentivizes the development of models
with a different, and arguably wider range of applications than those which reflect
conceptual association. Second, SimLex-999 contains a range of concrete and abstract
adjective, noun and verb pairs, together with an independent rating of concreteness
and (free) association strength for each pair. This diversity enables fine-grained
analyses of the performance of models on concepts of different types, and
consequently greater insight into how architectures can be improved. Further, unlike
existing gold standard evaluations, for which automatic approaches have reached or
surpassed the inter-annotator agreement ceiling, state-of-the-art models perform
well below this ceiling on SimLex-999. There is therefore plenty of scope for SimLex-
999 to quantify future improvements to distributional semantic models, guiding the
development of the next generation of representation-learning architectures.

