Lecture 4: Neural Language Models

An introduction with word2vec
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“It was all a dream, | used to
read [word2vec] magazine;
[skip-gram] and [CBOW] up in

the limousine”

— Christopher Wallace




ANNOUNCEMENTS

Keep an eye on the HW1 Errata, posted on Ed. HW1 is due in 1 week!
We now have a Slack workspace, mostly for lively discussion and research work
Ed is still our main forum for all official communication, questions you may have,
and remote Quizzes.

Office Hours change a little:

+Mer@Jpem—3pm Mon @ 1:30pm — 3:30pm

+Sat@ Harm—Ham Sun @ 10am — 11am



ANNOUNCEMENTS

Research Project:

Add your ideas and name/info to Research Brainstorming spreadsheet
Phase 1 is due Sept 30. Write a 1-page proposal for one of your ideas listed
on Research Brainstorming. Afterwards, we'll refine the list to ~25 projects

and determine teams.

Phase 2 is due Oct 14. This will lock-in all 20 projects and teammates.



RECAP: L2 ate

« Default character-level representations aren’t useful 61174|65

« Simple document-level representations (e.g., BoW and TFIDF) can be useful but

have weaknesses:
 Context-insensitive (“the horse ate” = “ate the horse”)
* Curse of Dimensionality (vocab could be over 100k)

« Orthogonality: no concept of semantic similarity at the word-level

# docs in corpus
# docs containing w;

)

TFIDF = f *log (




RECAP: L3

« Language Modelling is a core NLP task and highly useful for many other tasks.

* n-gram models (count-based) can be surprisingly useful but have weaknesses:

 Must handle OOV words (all LMs must do this)
« Unsustainable approach to handling increasingly larger contexts

« No semantic information is conveyed by the counts (e.g., vehicle vs car)

 Perplexity is the canonical evaluation metric for LMs

Bi-gram model with alpha-beta smoothing

r (d *P(w'
P! (D) + FP(W) , where P(w') =
Ny wx (d) + B ny, +al|V|

nyr(d)+a

P("W’W’") =
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Remaining Issues

Q 1. More context while avoiding sparsity, storage, and compute issues

g 2. No semantic information conveyed by counts (e.g., vehicle vs car)

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll NeW Oa|S!
Q 3. Cannot leverage non-consecutive patterns 9 y
Dr. West Dr. Cornell West
Occurred 25 times Occurred 3 times

Q 4. Cannot capture combinatorial signals (i.e., non-linear prediction)

P(Chef cooked food) high P(Customer cooked food) low

K P(Chef ate food) low P(Customer ate food) high :'.

Slide adapted from or inspired by Graham Neubig's CMU NLP 2021



Featurized Model

Instead of counts, let's move toward having words represented

as features, where # features « # of words in vocab

We can develop a very simple linear model

that calculates word probabilities

Slide adapted from or inspired by Graham Neubig's CMU NLP 2021
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Featurized Model

Specifically, let’s have:

* 1 featurized representation for word w;_,

* A separate representation for word w;_4

Combine them w/ a bias, and predict the next word

Slide adapted from or inspired by Graham Neubig's CMU NLP 2021
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Featurized Model
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Slide adapted from or inspired by Graham Neubig's CMU NLP 2021



A "lookup table” is trivial.

It simply converts each unique word w to an index i € V,

where V is the size of our vocabulary.
Vx1

We often work with the one-hot version of it, x;:

Vx1

= (00000

Lookup table(w;_,

passing a

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021



Embedding/ feature matrix v is an “input word matrix”.
Each column of v corresponds to each unique word type w

Retrieve a word w's Embedding via:
- Slicing the index i, or
- Matrix multiply

vector
size N

t 1

Lookup table(w;_5,) Lookup table(w;_4)
passing a

Slide adapted from or inspired by Graham Neubig's CMU NLP 2021



Embedding/ feature matrix v is an “input word matrix”.
Each column of v corresponds to each unique word type w

OIQIOIQIOIOONO]  Retrieve a word w's Embedding via:
- Slicing the index i, or
- Matrix multiply

vector

3
size N olo
@) (@)
# w

V; = VX

Nx1 = NxXV * Vxl1

passing a

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021



Featurized Model
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Featurized Model

These are the only 3 components of our model.
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Featurized Model

We know that each word vector x; is selected from its larger matrix:

: Vx1 Vx1 vx1
) ® )
= 1O O O
S (@ O + O
= |O O O
: © ® ©
-‘.. * ? bias‘

Lookup table(w;_,)
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Featurized Model

How we do train a model to learn these 2 matrices, and the bias vector?
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Featurized Model

Train the model using gradient descent:
« Use our output probabilities
 Calculate the cross-entropy loss

* Use backprop to calculate gradients

« Update the 2 embedding matrices and bias via GD

20



Featurized Model

What does it mean to “update” these Embedding

matrices? How? Where are the weights?!

See chalkboard for details.

21



Unknown Words

« We still need to handle UNK words. Always.
 Language is always evolving
e Ziptian distribution

e Larger vocabularies require more memory and compute time

How can we handle UNK words in a neural model?

22



Unknown Words

Common ways to amend the data:
* Frequency threshold (e.g., UNK <= 2)
e Remove bottom N%

* Represent each word as sub-words (e.g., byte-pair encodings)

Common neural modelling approaches:

« Add an UNK token to your vocabulary (just like for n-grams)

23



Evaluation

Very Important:

* Any given LM must be able to generate the test set (at least).

Otherwise, it cannot be fairly evaluated (OQV problem).

* When comparing multiple LMs to each other, their vocabularies

must be the same (e.g., words, sub-words, characters).

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021



Remaining Issues

Q 1. More context while avoiding sparsity, storage, and compute issues

g 2. No semantic information conveyed by counts (e.g., vehicle vs car)

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll NeW Oa|S!
0 3. Cannot leverage non-consecutive patterns 9 y
Dr. West Dr. Cornell West
Occurred 25 times Occurred 3 times

Q 4. Cannot capture combinatorial signals (i.e., non-linear prediction)
P(Chef cooked food) high P(Customer cooked food) low

K P(Chef ate food) low P(Customer ate food) high :'.

Slide adapted from or inspired by Graham Neubig's CMU NLP 2021 >



We clearly need:
» dense representations (i.e., < |V|)
* leverage semantic information

* non-linear power

Neural models, here we come!

26
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Neural Network Motivation

Non-linear power: using non-linear activation

functions can allow us to capture rich, combinatorial

attributes of language

29



Neural Network Motivation

Curse of dimensionality:
« Say our vocab V| = 100,000
« Naively modelling the joint probability of 10 consecutive,

discrete random variables (e.g., words in a sentence) yields

100,0001° — 1 = 10°Y free parameters.

«  Word embeddings reduce the # of parameters and hopefully

improve the model’s ability to generalize

Slide adapted from or inspired by Ryan Cotterell ETH-Zurich 2021
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Bengio (2003)

1.1 Fighting the Curse of Dimensionality with Distributed Representations

In a nutshell, the idea of the proposed approach can be summarized as follows:

1. associate with each word in the vocabulary a distributed word feature vector (a real-
valued vector in R™),

2. express the joint probability function of word sequences in terms of the feature vectors
of these words in the sequence, and

3. learn simultaneously the word feature vectors and the parameters of that probability
function.

A Neural Probabilistic Language Model. Bengio et al. JMLR (2003) 31



Bengio (2003)

1.1 Fighting the Curse of Dimensionality with Distributed Representations

In a nutshell, the idea of the proposed approach can be summarized as follows:

1. associate with each word in the vocabulary a distributed word feature vector (a real-
valued vector in R™),

2. express the joint probability function of word sequences in terms of the feature vectors
of these words in the sequence, and

3. learn simultaneously and the parameters of that| probability |

function.

A Neural Probabilistic Language Model. Bengio et al. JMLR (2003) 32



Bengio (2003)

Simultaneously learn the representation and do the modelling!

man (00O 0O @)

woman (00 00O @]

table 00000 @]

33



Bengio (2003)

and dathe modelling!

 Each circle is a specific floating point scalar

« Words that are more semantically similar to one

another will have embeddings that are

proportionally similar, too

table 00000 @




Bengio (2003) i-th output = P(w, = i | context)
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Bengio (2003) i-th output = P(w, = i | context)
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Bengio (2003)

y = b+ Wx +Utanh(d + Hx)
X = [C(Wt_g); C(Wt—Z); C(Wt—l)]

o ={b,W,U,d,H,C)

i-th output = P(w; = i | context)
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Bengio (2003)

Word embeddings: similar input
words get similar vectors

Similar contexts get similar hidden
states

Similar output words get similar
rows in the output matrix

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021



Bengio (2003)

FORWARD
PASS

(a) Perform forward computation for the word features layer:
x(k) — C(wi—y),
x=(x(1),x(2),--- ,x(n—1))
(b) Perform forward computation for the hidden layer:
o+—d-+Hx
a < tanh(o)
(c¢) Perform forward computation for output units in the i-th block:
Y 0
Loop over j in the i-th block
I b bj+a.Uj
ii. If (direct connections) y; < y; +x.W;
ili. p; — &’
1v. Si—8S;+p j
(d) Compute and share S = Y ;s; among the processors. This can easily be achieved with an
MPI Allreduce operation, which can efficiently compute and share this sum.
(e) Normalize the probabilities:
Loop over j in the i-th block, p; < p;/S.

(f) Update the log-likelihood. If w, falls in the block of CPU i > 0, then CPU i sends p,,, to
CPU 0. CPU 0 computes L = log p,,, and keeps track of the total log-likelihood.

39



B en g | O (2 003) BACKWARD/UPDATE PHASE, with learning rate €.

I — (a) Perform backward gradient computation for output units in the i-th block:
clear gradient Vectors d
Loop over j in the i-th block

ayj e IJ__Wr pj

il by by gL ay/
If (direct connections) 3—1; — %—f e gyL W;
BACKWARD %%t
If (direct connections) W; « W, + exx
PASS s

(b) Sum and share g—ﬁ and 3—§ across processors. This can easily be achieved with an MPI
Allreduce operation.

(c) Back-propagate through and update hidden layer weights:
Loop over k between 1 and A,
aok (1 - ak) day
E-S+HE
d—d+ 83—{;
H—H+ S%x’

(d) Update word feature vectors for the input words:
Loop over k between 1 and n— 1
C(Wt k) — C(Wt k) +8%{4)

where aa(L) is the £-th block (of length m) of the vector a !



Bengio (2003)

Train the model using gradient descent:
« Use our output probabilities
 Calculate the cross-entropy loss

* Use backprop to calculate gradients

« Update all weight matrices and bias via GD

SAME AS WE DO FOR ALL OF OUR NEURAL NETS

41



Bengio (2003)

RESULTS

n v h | m | direct | mix | train. | valid. | test.
MLP1 5 50 [ 60 | vyes no 182 284 | 268
MLP2 > 50 | 60 | yes | yes 273 | 257
MLP3 5 01|60 | vyes no 201 327 | 310
MLP4 5 060 yes | yes 286 | 272
MLP5 S 50 | 30 [ yes no 209 296 | 279
MLP6 5 50| 30| yes | yes 213 | 259
MLP7 3 50 | 30 | yes no 210 309 | 293
MLPS 3 50 |30 | yes | yes 284 | 270
MLP9 5 100 | 30 no no 175 280 | 276
MLP10 S 100 | 30 | no yes 265 | 252
Del. Int. 3 31 352 | 336
Kneser-Ney back-off | 3 334 | 323
Kneser-Ney back-off | 4 332 | 321
Kneser-Ney back-off | 5 332 | 321
class-based back-off | 3 150 348 | 334
class-based back-off | 3 | 200 354 | 340
class-based back-off | 3 | 500 326 | 312
class-based back-off | 3 | 1000 335 | 319
class-based back-off | 3 | 2000 343 | 326
class-based back-off | 4 | 500 327 | 312
class-based back-off | 5 | 500 327 | 312




Bengio (2003) Remaining Issues

Q 1. More context while avoiding sparsity, storage, and compute issues

0 2. No semantic information conveyed by counts (e.g., vehicle vs car)

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll NeW Oa|S!
0 3. Cannot leverage non-consecutive patterns 9 _
Dr. West Dr. Cornell West
Occurred 25 times Occurred 3 times

0 4. Cannot capture combinatorial signals (i.e., non-linear prediction)

P(Chef cooked food) high P(Customer cooked food) low

K P(Chef ate food) low P(Customer ate food) high :

Slide adapted from or inspired by Graham Neubig's CMU NLP 2021 43



Bengio (2003) Remaining Issues

This was not the first neural language model, but it was the first, highly

compelling model with great results (e.g., beating n-grams)

The softmax output layer is annoyingly slow

44
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Distributional Semantics

Distributional: meaning is represented by the contexts in which its used

“Distributional statements can cover all of the material of a language

without requiring support from other types of information”
-- Zellig Harris. Distributional Structure. (1954)

“You shall know a word by the company it keeps”

-- John Rupert Firth. A Synopsis of Linguistics Theory. (1957)

47



Auto-regressive language models

| bought a

Good morning,

| got my

48



Masked language models

| bought a from the bakery

Good morning, . Rise and shine!

| got my license last week

49



word2vec

Two approaches:
1. Continuous Bag-of-Words (CBOW)

2. Skip-gram w/ negative sampling

50



word2vec: CBOW

Step 1: Iterate through your entire corpus, with sliding context

windows of size N and step size 1

Step 2: Using all 2N context words, except the center word, try

to predict the center word.

Step 3: Calculate your loss and update parameters (like always)

51



WO rd ZVGCI C BOW INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

SUM

w(t+2)

//J |

|

CcBOW

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.
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WO rd 2veC: C BOW INPUT PROJECTION OUTPUT

y = U *sum(Hx)

X = [Weg, We_1, Wiyt , Wey2] e x
. SUM y

N = # total context words

D = embedding size

V = # word types

Vx 1| CBOW

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.
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word2vec: CBOW

* Linear projection layer

* Non-linear output layer (softmax)

e Training in batches helps a lot

54



word2vec: skip-gram

Step 1: Iterate through your entire corpus, with sliding context

windows of size N and step size 1

Step 2: Using the masked center word, try to predict all 2N

center words.

Step 3: Calculate your loss and update parameters (like always)

55



WOI’dZVeCZ skip—gram INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.



word2vec: skip-gram

In practice, this softmax is painfully slow.
Instead, flip the modelling to be pairs of words:

e.g., (center word, context word)

It would learn to always predict 1. So, probabilistically sample

negative examples based on their frequencies

57



word2vec: results

* Smaller window sizes yield embeddings such that high

similarity scores indicates that the words are interchangeable

 Larger window sizes (e.g., 15+) yield embeddings such that

high similarity is more indicative of relatedness of the words.



word2vec: results

« Words that appear in the same contexts are forced to

gravitate toward having the same embeddings as one

another

 Imagine two words, w; and w,, that never appear together,

but they each, individually have the exact same contexts with

otherwords. w; and w, will have ~identical embeddings!

« "The” appears the most. What do you imagine its

embedding is like?



word2vec results
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Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-
Syntactic Word Relationship test set.

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago [llinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective | Switzerland Swiss Cambodia | Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

61



Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer

Japan - sushi

Baltimore: Maryland
Messi: midfielder
Berlusconi: Italy

zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo

Germany: bratwurst

Dallas: Texas
Mozart: violinist
Merkel: Germany

gold: Au
Putin: Medvedev
IBM: Linux
IBM: McNealy
France: tapas

Kona: Hawaii
Picasso: painter
Koizumi: Japan

uranium: plutonium
Obama: Barack

Apple: iPhone
Apple: Jobs
USA: pizza
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d2 It
worb Ve reeu Incredible finding!!

King — man + woman ~= queen

king | | | | 1

man

woman ‘ I I

King—-man+woman l I
queen l l
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word2vec results

Disclaimer: As a heads-up, no models create

embeddings such that the dimensions actually
correspond to linguistic or real-world phenomenon.

The embeddings are often really great and useful, but
no single embedding (in the absence of others) is
interpretable.
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Evaluation

We cheated by looking ahead, so it's unfair to measure

perplexity against n-gram or other auto-regressive LM

Intrinsic evaluation:

» Word similarity tasks
» Word analogy tasks

Extrinsic evaluation:

 Apply to downstream tasks (e.g., Natural language inference,
entailment, question answering, information retrieval)




Evaluation Word Similarity

SimLex-999

presence 0.4

learn 5.48

possess 5
withdraw 2.97
plenty 8.97
reject | 0.83

acknowled: 6.88
believe 6.75
deny 1.7

forgive 3.73

Slide adapted from or inspired by Sam Bowman's NYU NLP 2021



Evaluation

Word Analogy

vector(‘’king’) - vector(‘man’) + vector(‘woman’) = vector(‘queen’)
vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) = vector(‘Rome’)

WOMAN
QUEENS

MAN / / o

UNCLE

QUEEN

Slide adapted from or inspired by Sam Bowman's NYU NLP 2021



Outline

Featurized, Linear Model
Neural Models

mmmm Bengio (2003)
e WoOrd2vec (2013)
Evaluation

Remaining challenges



Outline

Featurized, Linear Model
Neural Models

mmmm Bengio (2003)
e WoOrd2vec (2013)
Evaluation

Remaining challenges



Remaining Challenges

e Still can’t handle long-range dependencies.
 Each decision is independent of the previous!

« Having a small, fixed window that repeats is a bit forced and

awkward
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